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ABSTRACT 

 

In order to implement simultaneously in the same two-dimensional FDTD simulation an ABC (Absorbing Boundary 

Condition) formed by loss layers as well as a dielectric medium within the FDTD gate, the DB-FDTD formulation 

for the case 2D is studied in this paper. The DB-FDTD formulation uses the electric and magnetic flux densities in 

Maxwell's equations. The DB-FDTD formulation allows to separate the update equations in the program into two 

categories. One equation group will be used for the implementation of loss layers, and another group for the 

definition of simulation space using the space-dependent electromagnetic parameters. Simulations for the 2D case 

are implemented with sources introduced by TFSF (Total Field Scattered Field) limit, thus introducing a plane wave 

into the simulation space. The simulation of the plane wave propagation is made for vacuum and for a medium 

where a dielectric cylinder is present in the vacuum. 

Keyword: FDTD 2D, ABC, Loss layer, Dielectric Cylinder, DB-FDTD, Plane Wave 

 

1. INTRODUCTION  

Termination of an FDTD grid using loss layers properly absorbs waves exiting the grid. In order to implement such 

terminations, electrical and magnetic (virtual) conductivities are involve [1]. This can cause confusion when 

modeling an anisotropic conductive medium, for to do the values of electric and magnetic conductivities are formed 

so that they are dependent on space. Thus the classical FDTD implementation of an anisotropic medium requires 

more attention on its implementation with grid terminations with loss layers. 

For the implementation of FDTD grid terminations with loss of layers does not interfere with the modeling of the 

anisotropic medium in the grid, this work will discuss the FDTD formulation (DB-FDTD) using electric flux density 

(D) and magnetic flux density (B). The simulation of the propagation of a plane wave in TM (Transverse Magnetic) 

mode within a 2D FDTD grid will be the subject of particular attention in this paper.   

2. REFORMULATION A L’AIDE DES DENSITES DE FLUX 

A more generalized form of Maxwell's equations uses electric flux density (𝐷) and magnetic flux density (𝐵) in 

addition to electric and magnetic fields. This general form, presented in Eq.1, introduces the material equations 

linking the flux densities and the electric and magnetic fields in frequency domain (Eq.1.b and Eq.2.d). Eq.1.a 

defined relationship between the magnetic field and the electric flux density, and Eq.1.c defined relationship 

between the electric field and the magnetic flux density [2]. The polarization functions are defined with electrical 
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and magnetic conductivities (𝜎𝑒𝑝 and 𝜎𝑚𝑝) which are fictitious parameters allowing the implementation of the grid 

termination by absorbing layer. 

∇ × 𝐻⃗⃗ =
𝜕𝐷⃗⃗ 

𝜕𝑡
+

𝜎𝑒𝑝

𝜀
𝐷⃗⃗        (1.a) 

𝐷̂(𝜔) = 𝜀̂(𝜔). 𝐸̂(𝜔)       (1.b) 

∇ × 𝐸⃗ = −
𝜕𝐵⃗ 

𝜕𝑡
−

𝜎𝑚𝑝

𝜇
𝐵⃗        (1.c) 

𝐵̂(𝜔) = 𝜇̂(𝜔). 𝐻̂(𝜔)       (1.d) 

2.1. Electrical and magnetic flux densities update equations 

The Ampère (Eq.1.a) and Faraday (Eq.1.c) equations lead to formulations with finite difference of flux densities [3]. 

These formulations lead to the updating equations for the electric flux density (Eq.2) and for the magnetic flux 

density (Eq.3). Eq.2 and Eq.3 relate to the updates of the fields for the 2D case where there are variations only for 

the propagation in 𝑥 and 𝑦 directions in mode TM, there is no variation in the 𝑧 direction. The multiplication 

coefficients of the densities and fields are expressed using loss factors to facilitate the implementation of the 

termination of the grid with loss layers [1].  

𝐷𝑧
𝑛+1(𝑖, 𝑗) = 𝐶𝑑𝑑(𝑖, 𝑗)𝐷𝑧

𝑛(𝑖, 𝑗) + 𝐶𝑑ℎ(𝑖, 𝑗) {(
𝐻𝑦

𝑛+
1
2(𝑖,𝑗)−𝐻𝑦

𝑛+
1
2(𝑖−1,𝑗)

∆𝑥
) − (

𝐻𝑥

𝑛+
1
2(𝑖,𝑗)−𝐻𝑥

𝑛+
1
2(𝑖,𝑗−1)

∆𝑦
)}  (2.a) 

𝐶𝑑𝑑(𝑖, 𝑗) =
1−

𝜎𝑒𝑝(𝑖,𝑗)∆𝑡

2𝜀(𝑖,𝑗)

1+
𝜎𝑒𝑝(𝑖,𝑗)∆𝑡

2𝜀(𝑖,𝑗)

=
1−𝑝𝑒𝑧(𝑖,𝑗)

1+𝑝𝑒𝑧(𝑖,𝑗)
    ;  𝐶𝑑ℎ(𝑖, 𝑗, 𝑘) =

∆𝑡

1+
𝜎𝑒𝑝(𝑖,𝑗)∆𝑡

2𝜀(𝑖,𝑗)

=
∆𝑡

1+𝑝𝑒𝑧(𝑖,𝑗)
  (2.b) 

𝐵𝑥

𝑛+
1

2(𝑖, 𝑗) = 𝐶𝑏𝑏(𝑖, 𝑗)𝐵𝑥

𝑛−
1

2(𝑖, 𝑗) + 𝐶𝑏𝑒(𝑖, 𝑗) (
𝐸𝑧

𝑛(𝑖,𝑗+1)−𝐸𝑧
𝑛(𝑖,𝑗)

∆𝑦
)      (3.a) 

𝐶𝑏𝑥𝑏𝑥(𝑖, 𝑗) =
1−

𝜎𝑚𝑝(𝑖,𝑗)∆𝑡

2𝜇(𝑖,𝑗)

1+
𝜎𝑚𝑝(𝑖,𝑗)∆𝑡

2𝜇(𝑖,𝑗)

=
1−𝑝𝑚𝑥(𝑖,𝑗)

1+𝑝𝑚𝑥(𝑖,𝑗)
  ;  𝐶𝑏𝑥𝑒𝑧(𝑖, 𝑗) =

−∆𝑡

1+
𝜎𝑚𝑝(𝑖,𝑗)∆𝑡

2𝜇(𝑖,𝑗)

=
−∆𝑡

1+𝑝𝑚𝑥(𝑖,𝑗)
  (3.b) 

𝐵𝑦

𝑛+
1

2(𝑖, 𝑗) = 𝐶𝑏𝑏(𝑖, 𝑗)𝐵𝑦

𝑛−
1

2(𝑖, 𝑗) + 𝐶𝑏𝑒(𝑖, 𝑗) (
𝐸𝑧

𝑛(𝑖+1,𝑗)−𝐸𝑧
𝑛(𝑖,𝑗)

∆𝑥
)      (3.c) 

𝐶𝑏𝑦𝑏𝑦(𝑖, 𝑗) =
1−

𝜎𝑚𝑝(𝑖,𝑗)∆𝑡

2𝜇(𝑖,𝑗)

1+
𝜎𝑚𝑝(𝑖,𝑗)∆𝑡

2𝜇(𝑖,𝑗)

=
1−𝑝𝑚𝑦(𝑖,𝑗)

1+𝑝𝑚𝑦(𝑖,𝑗)
  ;  𝐶𝑏𝑦𝑒𝑧(𝑖, 𝑗) =

∆𝑡

1+
𝜎𝑚𝑝(𝑖,𝑗)∆𝑡

2𝜇(𝑖,𝑗)

=
∆𝑡

1+𝑝𝑚𝑦(𝑖,𝑗)
  (3.d) 

The implementation of these equations in a time walking loop is done in the same way as when implementing the 

field update equations in a usual formulation of the 2D FDTD.  

Since the parameters 𝜎𝑒𝑝 and 𝜎𝑚𝑝 belong to fictitious sources in the medium, they do not come into play for the 

definition of the constituent materials inside the grid. However, to be able to terminate the FDTD grid with paired 

loss layers with the medium, these terms are used for absorption of incident waves at the edges of the grid. 
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2.2. Electric and magnetic fields update equations 

Equations 1.b and 1.d must be formulated as a time domain difference for an FDTD implementation. It is therefore 

necessary to pass these equations from the frequency domain to the time domain. For this, the medium is considered 

as a medium with electrical and magnetic losses, the material parameters of which are given in Eq.4 [2] [4]. 

𝜀̂(𝜔) = 𝜀0𝜀𝑟̂(𝜔)        (4.a) 

𝜀𝑟̂(𝜔) = 𝜀𝑟 +
𝜎𝑒

𝑗𝜔𝜀0
       (4.b) 

𝜇̂(𝜔) = 𝜇0𝜇̂𝑟(𝜔)       (4.c) 

𝜇̂𝑟(𝜔) = 𝜇𝑟 +
𝜎𝑚

𝑗𝜔𝜇0
       (4.d) 

Using Eq.4.b in Eq.1.b, and Eq.4.d in Eq.1.d, the equations relating flux densities to fields are obtained in Eq.5. 

Applying the inverse Fourier transform to Eq.5.a provides the electric flux density as a function of time (Eq.6). In 

Eq.6, the integral is approximated by a sum over the time step ∆t, thus giving the time-sampled form of the electric 

flux density at Eq.prg.7.  

𝐷̂(𝜔) = 𝜀0𝜀𝑟𝐸̂(𝜔) +
𝜎𝑒

𝑗𝜔
𝐸̂(𝜔)       (5.a) 

𝐵̂(𝜔) = 𝜇0𝜇𝑟𝐻̂(𝜔) +
𝜎𝑚

𝑗𝜔
𝐻̂(𝜔)        (5.b) 

𝐷(𝑡) = 𝑇𝐹−1{𝐷̂(𝜔)} = 𝜀𝐸(𝑡) + 𝜎𝑒 ∫ 𝐸(𝜏)𝑑𝜏
𝑡

0
            (6) 

𝐷𝑛 = 𝜀𝐸𝑛 + 𝜎𝑒∆𝑡 ∑ 𝐸𝑖𝑛
𝑖=0               (7) 

In Eq. 7, the resolution of the field at time step 𝑛 depend on the current value of the flux density (𝐷𝑛) as well as on 

the current value of the field (𝐸𝑛). This is an inconsistency, because the current value of a field should depend only 

on the current and / or passed value of another field and / or the passed value of the field to be calculated. In order to 

correct the formulation of Eq.7, the term 𝐸𝑛 is removed from the summation (Eq.8). 

𝐷𝑛 = 𝜀𝐸𝑛 + 𝜎𝑒∆𝑡𝐸𝑛 + 𝜎𝑒∆𝑡 ∑ 𝐸𝑖𝑛−1
𝑖=0          (8) 

Using Eq. 8, the current value of the field can be calculated from the current value of the flux density (𝐷𝑛) and the 

previous values of the field (𝐸𝑖|
𝑖∈[0,𝑛−1]

). The equations for updating the electric and magnetic fields are thus 

obtained in Eq. 9.  

𝐸𝑛 =
𝐷𝑛−𝜎𝑒∆𝑡 ∑ 𝐸𝑖𝑛−1

𝑖=0

𝜀+𝜎𝑒∆𝑡
        (9.a) 

𝐻𝑛 =
𝐵𝑛−𝜎𝑚∆𝑡 ∑ 𝐻𝑖𝑛−1

𝑖=0

𝜇+𝜎𝑚∆𝑡
        (9.b) 

The summation terms are defined by the auxiliary terms 𝐼𝑒  for Eq.9.a and 𝐼𝑚 for Eq.9.b. These auxiliary terms are 

given in Eq. 10. 

𝐼𝑒
𝑛−1 = 𝜎𝑒∆𝑡 ∑ 𝐸𝑖𝑛−1

𝑖=0         (10.a) 

𝐼𝑚
𝑛−1 = 𝜎𝑚∆𝑡 ∑ 𝐻𝑖𝑛−1

𝑖=0         (10.b) 
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In the end, the equations for updating the fields associated with the equations for updating the auxiliary terms are 

given in Eq.10 for the electric field and in Eq.11 for the magnetic field. 

𝐸𝑛 =
𝐷𝑛−𝐼𝑒

𝑛−1

𝜀+𝜎𝑒∆𝑡
         (10.a) 

𝐼𝑒
𝑛 = 𝐼𝑒

𝑛−1 + 𝜎𝑒∆𝑡𝐸𝑛        (10.b) 

 

𝐻𝑛 =
𝐵𝑛−𝐼𝑚

𝑛−1

𝜇+𝜎𝑚∆𝑡
         (11.a) 

𝐼𝑚
𝑛 = 𝐼𝑚

𝑛−1 + 𝜎𝑚∆𝑡𝐸𝑛        (11.b) 

All the information about the media is contained in Eq.10 and Eq.11. The medium can be defined using the 

coefficients of these equations, using the electromagnetic parameters. 

3. DB-FDTD ALGORITHM USING FLUX DENSITIES FOR PLANE WAVE PROPAGATION 

3.1. Grid termination with loss layers 

In order for the grid to behave like an infinite space, its boundaries will be made up with absorbent layers whose 

absorption factors are gradually increased as the layers progress. The application of the grid termination by 

absorbent layers, only involves the flux density updating equations (Eq.2 and Eq.3). Equation 12 represents the 

calculation of loss factors [1]. 

𝑖𝜖[1, 𝑡𝑎𝑖𝑙𝑙𝑒𝑝𝑒𝑟𝑡𝑒]         (12.a) 

𝑝𝑒𝑟𝑡𝑒(𝑖) = 0.333 (
𝑖

𝑡𝑎𝑖𝑙𝑙𝑒𝑝𝑒𝑟𝑡𝑒
)
3

       (12.b) 

𝑝𝑒𝑧(𝑖: 𝑡𝑎𝑖𝑙𝑙𝑒𝑥 − 𝑖 + 1 , 𝑖) = 𝑝𝑒𝑟𝑡𝑒(𝑡𝑎𝑖𝑙𝑙𝑒𝑝𝑒𝑟𝑡𝑒 − 𝑖 + 1)    (12.c) 

𝑝𝑒𝑧(𝑖: 𝑡𝑎𝑖𝑙𝑙𝑒𝑥 − 𝑖 + 1 , 𝑡𝑎𝑖𝑙𝑙𝑒𝑦 − 𝑖 + 1) = 𝑝𝑒𝑟𝑡𝑒(𝑡𝑎𝑖𝑙𝑙𝑒𝑝𝑒𝑟𝑡𝑒 − 𝑖 + 1)   (12.d) 

𝑝𝑒𝑧(𝑖, 𝑖: 𝑡𝑎𝑖𝑙𝑙𝑒𝑦 − 𝑖 + 1 ) = 𝑝𝑒𝑟𝑡𝑒(𝑡𝑎𝑖𝑙𝑙𝑒𝑝𝑒𝑟𝑡𝑒 − 𝑖 + 1)    (12.e) 

𝑝𝑒𝑧(𝑡𝑎𝑖𝑙𝑙𝑒𝑥 − 𝑖 + 1, 𝑖: 𝑡𝑎𝑖𝑙𝑙𝑒𝑦 − 𝑖 + 1 ) = 𝑝𝑒𝑟𝑡𝑒(𝑡𝑎𝑖𝑙𝑙𝑒𝑝𝑒𝑟𝑡𝑒 − 𝑖 + 1)   (12.f) 

𝑝𝑒𝑧 = 𝑝𝑚𝑥 = 𝑝𝑚𝑦        (12.g) 

The loss factors have zero values for the entire space constituting the interior of the grid. As the loss factors Do not 

intervene in Eq.10 and Eq.11, the definition of loss layers as ABC of the FDTD grid does not in any way affect the 

implementation of the definition of the materials constituting the medium of simulation. 

3.2. TFSF formulation for introducing plane wave 

The TFSF formulation is done by applying the corrections to the flux densities. The corrections are made in a 

similar way as for the conventional 2D FDTD formulation. For the simulation of a plane wave propagating in the 

direction of 𝑥 positive, the correction equations are applied to the electric flux density (Eq.13) and to the 

components of the magnetic flux density (Eq.14, Eq.15 ). The TFSF limit is defined by the nodes of coordinates 

(𝑖𝑑 , 𝑗𝑑) and (𝑖𝑓 , 𝑗𝑓) defining a rectangular limit [5].  
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𝑗 ∈ [𝑗𝑑, 𝑗𝑓]           (13.a) 

𝐷𝑧
𝑛+1(𝑖𝑑 , 𝑗) = 𝑐𝑑𝑧𝑑𝑧𝐷𝑧

𝑛(𝑖𝑑 , 𝑗) − 𝑐𝑑𝑧𝑏𝑦𝐻𝑦𝑖𝑛𝑐

𝑛+
1

2 (𝑖𝑑 −
1

2
) /𝑒𝑝𝑠(𝑖, 𝑗)    (13.b) 

𝐷𝑧
𝑛+1(𝑖𝑓 , 𝑗) = 𝑐𝑑𝑧𝑑𝑧𝐷𝑧

𝑛(𝑖𝑓 , 𝑗) + 𝑐𝑑𝑧𝑏𝑦𝐻𝑦𝑖𝑛𝑐

𝑛+
1

2 (𝑖𝑓 +
1

2
) /𝑒𝑝𝑠(𝑖, 𝑗)    (13.c) 

 

𝑖 ∈ [𝑖𝑑 , 𝑖𝑓]         (14.a) 

𝐵𝑥

𝑛+
1

2 (𝑖, 𝑗𝑑 −
1

2
) = 𝑐𝑏𝑥𝑏𝑥𝐵𝑥

𝑛+
1

2 (𝑖, 𝑗𝑑 −
1

2
) − 𝑐𝑏𝑥𝑒𝑧𝐸𝑧𝑖𝑛𝑐

𝑛 (𝑖)    (14.b) 

𝐵𝑥

𝑛+
1

2 (𝑖, 𝑗𝑓 +
1

2
) = 𝑐𝑏𝑥𝑏𝑥𝐵𝑥

𝑛+
1

2 (𝑖, 𝑗𝑓 +
1

2
) + 𝑐𝑏𝑥𝑒𝑧𝐸𝑧𝑖𝑛𝑐

𝑛 (𝑖)    (14.c) 

 

𝑗 ∈ [𝑗𝑑, 𝑗𝑓]         (15.a) 

𝐵𝑦

𝑛+
1

2 (𝑖𝑑 −
1

2
, 𝑗) = 𝑐𝑏𝑦𝑏𝑦𝐵𝑦

𝑛−
1

2 (𝑖𝑑 −
1

2
, 𝑗) − 𝑐𝑏𝑦𝑒𝑧𝐸𝑧𝑖𝑛𝑐

𝑛 (𝑖𝑑)    (15.b) 

𝐵𝑦

𝑛+
1

2 (𝑖𝑓 +
1

2
, 𝑗) = 𝑐𝑏𝑦𝑏𝑦𝐵𝑦

𝑛−
1

2 (𝑖𝑓 +
1

2
, 𝑗) + 𝑐𝑏𝑦𝑒𝑧𝐸𝑧𝑖𝑛𝑐

𝑛 (𝑖𝑓)    (15.c) 

 

3.3. 2D DB-FDTD algorithm for plane wave propagation 

The steps for calculating fields using the 2D DB-FDTD formulation involving flux densities are similar to the steps 

for calculating using the conventional 2D FDTD formulation. For the simulation of a plane wave, these calculation 

steps are: 

1. Updating the electric flux density 𝐷 at time 𝑛 + 1 (Eq.2) 

2. Correction of electric flux density 𝐷 at time 𝑛 + 1 (Eq.13) 

3. Updating the electric field 𝐸 at time 𝑛 + 1 (Eq.10.a) 

4. Update of the electrical auxiliary term 𝐼𝑒  at time 𝑛 + 1 (Eq.10.b) 

5. Updating the magnetic flux density 𝐵 at time 𝑛 +
1

2
 (Eq.3) 

6. Correction of magnetic flux density 𝐵 at time 𝑛 +
1

2
 (Eq.14, Eq.15) 

7. Updating the magnetic field 𝐻 at time 𝑛 +
1

2
 (Eq.11.a) 

8. Update of the magnetic auxiliary term 𝐼𝑚 at time 𝑛 +
1

2
 (Eq.11.b) 

9. Repeat steps 1 to 8 for each time step 
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4. DB-FDTD SIMULATION OF A PLANE WAVE MODE TM 

4.1. Propagation of a plane wave in vacuum 

Fig. 1 presents the snapshots of a Ricker wavelet introduced by TFSF formulation of a 2D grid of dimension 

(150 ×  100). In order to satisfy the stability criterion, the number of currents is set by 𝑆𝑐 = 0.7071. The medium is 

considered to be not ferromagnetic (𝜇𝑟 = 1,𝜎𝑚 = 0). Tab. 1 presents the parameters calculated for 2D simulations 

of the propagation of a plane wave traveling in a vacuum. 

Tab.1: 2D simulations parameters in vacuum 

Frequency Wavelength Spatial resolution Spatial step Time step 

𝑓𝑚𝑎𝑥 = 500 𝑇𝐻𝑧 𝜆𝑚𝑖𝑛 = 600 𝑛𝑚 𝑁𝜆 = 20 Δ𝑥 = 29.97 𝑛𝑚 

Δ𝑦 = 29.97 𝑛𝑚 

Δ𝑡 = 0.07 𝑓𝑠 

 

In Fig. 1, the Ricker wavelet is introduced by TFSF limit, and therefore the propagation of a plane wave is seen in 

this figure. The wave propagates in the direction of the 𝑥 positive, and is absorbed at the right edge of the grid. At 

𝑡 =  14.14 𝑓𝑠, half of the pulse has been absorbed by the paired loss layer in the middle, and there is no wave 

reflection at the edges of the grid.   

 

Fig.1: Snapshots of a plane wave propagating in vacuum using the DB-FDTD formulation 

4.2. Plane wave propagation striking a dielectric medium 

To simulate a plane wave interacting with an object, the object must be specified according to its electromagnetic 

properties: the dielectric constant and the conductivity. For example, the simulation concerning the propagation of a 

plane wave striking a dielectric cylinder of radius 𝑟 = 200 𝑛𝑚 ≅ 20 ∆𝑥, which has a dielectric constant specified 

by the parameter 𝜀 and a conductivity specified by the parameter 𝜎𝑒, described in the Eq.10. The parameters 
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calculated for a simulation with a dielectric medium of relative permittivity 𝜀𝑟 = 9, are given in Tab. 2. In order to 

define a circle 𝐶 with radius 𝑅, and center coordinate (𝑖𝑐 , 𝑗𝑐), the points belonging to the circle are defined in Eq.16. 

𝑝𝑜𝑖𝑛𝑡(𝑖, 𝑗) ∈ 𝐶 ∶ √(𝑖𝑐 − 𝑖)2 + (𝑗𝑐 − 𝑗)2 ≤ 𝑅     (16) 

Tab.2: Parameters of 2D simulations with a dielectric cylinder 

Frequency Wavelength Spatial resolution Spatial step Time step 

𝑓𝑚𝑎𝑥 = 500 𝑇𝐻𝑧 𝜆𝑚𝑖𝑛 = 200 𝑛𝑚 𝑁𝜆 = 40 Δ𝑥 = 9.99 𝑛𝑚 

Δ𝑥 = 9.97 𝑛𝑚 

Δ𝑡 = 0.02 𝑓𝑠 

 

Fig. 2 presents the snapshots of a plane wave striking an isolating material with relative permittivity 𝜀𝑟 = 9 and 

conductivity 𝜎𝑒 = 10−17 𝑆.𝑚−1. On reaching the perimeter of the circle, part of the wave is reflected while another 

part continues to propagate in the circle but with a speed reduced to a third of that in vacuum (𝑐 = 𝑐0/√𝜀𝑟). The 

fields reflected by the dielectric can go outside the TFSF limit and end up being absorbed by the absorbent layers 

terminating the grid.  

 

Fig.2: Illustration of a plane wave hitting an isolating dielectric medium 

Fig. 3 illustrates the propagation of a plane wave in vacuum where a conductive material with relative permittivity  

𝜀𝑟 = 9 and conductivity 𝜎𝑧 = 5,8 × 107 𝑆.𝑚−1 is placed at the center of the FDTD grid. The material being 

conductive, the incident waves to the circle are completely reflected then absorbed by the terminations of the grid 

when leaving the TFSF limit. 
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Fig.3: Illustration of a plane wave striking a conducting dielectric medium 

5. CONCLUSION 

The results of the 2D DB-FDTD formulation, using flux densities, are as accurate as for the classical 2D FDTD 

formulation using electric and magnetic fields. The implementation of the source as a plane wave, using a 

rectangular TFSF boundary, uses the same principles as for the implementation in the conventional 2D FDTD 

formulation. The only change is the application of the corrections for the flux densities for the DB-FDTD 

formulation instead of applying them to the fields as in the case of the classic FDTD formulation. The ABC 

consisting of the loss layer fulfills its role well by absorbing the fields leaving the TFSF limit and incident at the 

limits of the 2D FDTD grid. 

The use of the DB-FDTD formulation allows to distinguish the implementation of ABC and the implementation of 

anisotropic medium. The simulations using the DB-FDTD formulation for various plane wave propagation scenarios 

in TM mode, namely in vacuum as well as in vacuum and striking a isolating then a conductive dielectric, allows to 

account for the precision of the formulation equaling the precision of the classic 2D FDTD formulation. 
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