ANALYSIS ON FUZZY STRONGLY **g**^{*}AND δ**g**^{*}SUPER CLOSED SETS IN FUZZY TOPOLOGICAL SPACES

Hemalatha.S1, Sentamilselvi.M2

¹Research Scholar, Department of Mathematics, ²Assistant Professor, Department of Mathematics, Vivekanandha College of Arts and Sciences For Women (Autonomous), Tamilnadu,

ABSTRACT

In this paper we investigate the concept of fuzzy generalized closed sets and the properties of fuzzy strong g^* and δg^* super closed sets in a fuzzy topological spaces. And explore some of its characterization along with theorems.

Keyword: Fuzzy strong *g*^{*} super closed sets, fuzzy generalized super closed set, fuzzy topological space, fuzzy

super closure and interior.

1 INTRODUCTION

It 1965, Zadeh introduced the concept of fuzzy sets. As a generalization of topological spaces change introduced the concept of fuzzy topological space in 1968. g^* -closed sets were introduced and studied by Veerakumar for general topology. Recently Parimelazhagan and Subramonia pillai introduced strongly g^* -closed sets in topological space . In the present paper, we introduce fuzzy strongly g^* -closed sets in fuzzy topological space and investigate certain basic properties of these fuzzy sets.

A family τ of fuzzy sets of X is called a fuzzy topology on X if 0,1 belongs to τ and τ is super cosed with respect to arbitrary union and finite intersection. Then members of τ are called fuzzy set A of X the closure of A (denoted by cl(A)) is the intersection of all the fuzzy super closed super sets of A and the interior of A (denoted by int(A)) is the union of all fuzzy super open subsets of A.

1.1 Definition

A subset B of a fuzzy topological space (X, τ) is called

- 1. Fuzzy super closure $scl(B) = \{x \in X: cl(U) \cap B \neq \emptyset\}$
- 2. Fuzzy super interior $sint(B) = \{x \in X: cl(U) \le B \neq \emptyset\}$
- 3. Fuzzy super closed if $scl(B) \leq B$.
- 4. Fuzzy super open if 1-B is fuzzy super closed sint(B)=B.

1.2 Definition

Fuzzy generalized super closed set if $cl \le U$ whenever $B \le U$ and U is fuzzy super open in (X, τ) .

1.3 Definition

Let (X, τ) be a topological space and B be its subset, then B is fuzzy strongly g^* -super closed set if $cl(int(B)) \leq U$ whenever A $\leq U$ and U is fuzzy g^* -super open.

1.4 Definition

Let (X, τ) be a fuzzy topological space. A fuzzy set A of (X, τ) is called fuzzy strongly g^* -closed if Cl(Int(A)) \leq H whenever A \leq H and H is fg-open in X.

1.5 Definition

Let (X, τ) be a fuzzy topological space .A fuzzy set A of (X, Γ) is called fuzzy strongly g^* - super closed if cl(int(A)) \leq H, whenever A \leq H and H is fg-super open in X.

1.6 Theorem Every super closed set is fuzzy strongly *g*^{*} super closed set.

Proof:

suppose B is fuzzy g super closed set in X. let G be a fuzzy super open set containing in X.

Then G contains cl(B).Now $G \ge cl(B) \ge cl(int(B))$.

Thus B is fuzzy strongly g^{*}-super closed in X.

1.7 Theorem If B is a subset of a fuzzy topological space X is super open and fuzzy strongly g^* -super closed then it is fuzzy super closed.

Proof:

suppose a subset B of X is both fuzzy super open and fuzzy strongly g^* -super closed.

Now $B \ge cl(int(B) \ge cl(B)$. Therefore $cl(B) \ge B$. we have $B \ge cl(B)$. Thus B is fuzzy super closed in X.

1.8 Theorem A set B is fuzzy strongly g^* -super closed iff cl(int(B))-B contains no non empty fuzzy super closed set.

Proof:

Necessary: Suppose that H is non empty fuzzy super closed subset of cl(int(B)).Now $H \le cl(int(B))$ -Aimplies $H \le cl(int(B)) \cap B^c$, since $cl(int(B)) - B = cl(int(B)) \cap A^c$. Thus $H \le cl(int(B))$.Now $H \le B^c$ implies $B \le H^c$. Hence H^c is fuzzy g^* -super open and A is fuzzy strongly g^* -super closed, We have $cl(int(B))_H^c$. Thus $H \le cl(int(B))_c$. Hence $H \le (cl(int(B))) \cap (cl(int(B))_c) = \phi$. Therefore $H = \le (cl(int(A))_c + B^c)$ and non empty fuzzy super closed sets.

Sufficient: Let $B \leq G,G$ is fuzzy g -super open. Suppose that cl(int(B)) is not contained in G then $(cl(int((B)))^{c})$ is a non empty fuzzy super closed set of cl(int(B))-B which is a contradiction. Therefore $cl(int(B)) \leq G$ and hence B is fuzzy strongly g^{*} -super closed.

1.9 Theorem Suppose that $B \le A \le X$, B is fuzzy strongly g^* -super closed set relative to A and that both fuzzy super open and fuzzy strongly g^* -super closed subset of X then B is fuzzy strongly g^* -super closed set relative to X.

Proof:

Let B \leq G and G be a fuzzy super open set in X. But given that B \leq A \leq X, therefore B \leq A and B \leq G.This implies B \leq A \cap G.

since B is fuzzy strongly g^* -super closed relative to A, cl(int((B)) \leq A \cap G.that is A \cap cl(int(B)) \leq A \cap G.This implies A \cap (cl(int(B))) \leq A \cap G. This implies A \cap (cl(int(B))) \leq G.

Thus $(A\cap(cl(int(B))) \cup (cl(int(B)))^{c} \leq G\cup(cl(int(B)))^{c}$

implies $AU(cl(int(int(B)))^{c} \leq G((cl(int(B)))^{c})$.

Since A is fuzzy strongly g^{\bullet} -super closed in X, we have $(cl(int(A))) \leq GU(cl(int(B)))^{c}$. Also $B \leq A \Rightarrow cl(int(B)) \leq cl(int(A))$. Thus $cl(int(B)) \leq cl(int(A)) \leq G \leq (cl(int(B)))^{c}$. Therefore B is fuzzy strongly g^{\bullet} -super closed set relative to X.

1.10 Theorem Let B be fuzzy strongly g^* -super closed and suppose that h is fuzzy super closed then B \cap H is fuzzy strongly g^* -super closed set.

Proof:

To show that $B \cap H$ is fuzzy strongly g^* -super closed,

we have to sow $cl(int(B|H)) \leq G$ whenever $B \cap H \leq G$ and G is fuzzy g-super open. $B \cap H$ is fuzzy super closed in B so it is fuzzy strongly g^{*}-super closed in B.

since by the theorem We have $B\cap H$ is fuzzy strongly g^* -super closed in X.

Since $B \cap H \leq B \leq X$.

1.11 Theorem If A is fuzzy strongly g^* -super closed and $A \leq B \leq cl(int(A))$ then B is fuzzy strongly g^* -super closed.

Proof:

Given that $B \le cl(int(A))$ then $cl(int(B)) \le cl(int(A)), cl(int(B)) - B \le cl(int(A)) - A$.

since $A \leq B$. As A is fuzzy strongly g^* -super closed then we have cl(int(A))-A contains no non empty fuzzy super closed set, cl(int(B))-B contains no empty fuzzy super closed set.

Then we have B is fuzzy strongly g^{*}-super closed set.

1.12 Theorem Let $A \leq Y \leq X$ and suppose that A is fuzzy strongly g^* -super closed in X then A is fuzzy strongly g^* -super closed relative to Y.

Proof:

Given that $A \leq Y \leq X$ and A is fuzzy strongly g^* -super closed in X.

To show that A is fuzzy strongly g^* -super closed relative to Y, Let $A \leq Y \cap G$, where G is fuzzy g-super open in X.

Since A is strongly g^* -super closed relative to X, A \leq G implies cl(int(A)) \leq G. That is Y \cap cl(int(A) \leq Y \cap G, where Y \cap cl(int(A) is closure of interior of A in Y.

Thus A is fuzzy strongly g^* -super closed relative to Y.

1.13 Theorem If A is a fuzzy strongly g^* -closed set in(X, τ) and A \leq B \leq cl(int(A)), then B is fuzzy strongly g^* -closed in (X, τ).

Proof :

Let A be a fuzzy strongly g^* -closed set in (X, τ).

Let $B \leq H$ Where H is fuzzy *g*-open set in X.

Then A \leq H.since A is fuzzy strongly g^* -closed set, it follows that $cl(int(A)) \leq$ H.

Now $B \le cl(int(A))$ implies $cl(int(B)) \le cl(int(cl(int(A)))=cl(int(A)))$

We get $cl(int(B)) \leq H$. Hence B is fuzzy strongly g^* -closed set in (X, τ) .

1.14 Theorem Let a be a fuzzy strongly g^* -open in X and int(cl(A)) $\leq B \leq A$ then B is fuzzy strongly g^* -open in X.

Proof:

Suppose that a is fuzzy strongly g^* -open in X and $int(cl(A)) \le B \le A$. then 1-A is fuzzy strongly g^* -closed in X and 1-A ≤ 1 -B $\le cl(int(1-A))$.

Then we have 1-B is fuzzy strongly g^* -closed in X and hence B is fuzzy strongly g^* -open in X.

1.15 Theorem Every fuzzy g^* -super closed set is a fuzzy strongly g^* -super closed set in (X,Γ) . **Proof**:

suppose that A is f_g -super closed in X. Let H be a fg- super open set in X such that A \leq H. then cl(A) \leq H, since A is f_g -super closed.

Now $\operatorname{cl}(\operatorname{int}(A)) \leq \operatorname{cl}(A) \leq H$, hence A is fuzzy strongly g^* -closed set in X.

1.16 Theorem If A is fuzzy strongly g^{\bullet} -super closed set in (X, Γ) and $A \leq B \leq cl(int(A))$, then B is fuzzy strongly g^{\bullet} -super closed in (X, Γ) .

Proof:

Let A be a fuzzy strongly g^* -super closed set in (X, Γ) and B \leq H where H is a fuzzy g-open set in X. Then A \leq H.

Since A is a fuzzy strongly g^* -super closed set, it follows that $cl(int(A)) \leq H$. Now $B \leq cl(int(A))$ implies $cl(int(B)) \leq cl(int(cl(int(A)))) = cl(int(A))$. We get, $cl(int(B)) \leq H$.

Hence B is fuzzy strongly g^* -super closed set in (X, Γ) .

1.17 Theorem If a fuzzy set A of a fuzzy topological space X is both fuzzy super open and fuzzy strongly g^* -super closed, then it is fuzzy super closed.

Proof:

Suppose that a fuzzy set A of X is both fuzzy super open and fuzzy strongly g^* -super closed. Now $A \ge cl(int(A)) \ge cl(A)$. That is $A \ge cl(A)$, since $A \le cl(A)$.

So we get A=cl(A).

Hence A is fuzzy super closed inX.

1.18 Theorem If a fuzzy set A of a fuzzy topological space X is both fuzzy strongly g^* -super closed and fuzzy semi super open, then it is fg^* -super closed.

Proof:

Suppose a fuzzy set A of X is both fuzzy strongly g^* -super closed and fuzzy semi open in X. Let H be a fgopen set such that A \leq H.

since A is fuzzy strongly g^* –super closed ,therefore cl(int(A)) \leq H.

Also since A is fs-super open, $A \leq cl(int(A))$.

We have $cl(A) \leq cl(int(A)) \leq H$.

Hence A is fg -super closed in X.

1.19 Theorem If A is a fuzzy δg^* - closed set in (X, τ) and $A \leq B \leq fcl\delta(A)$, then B is a fuzzy δg^* - super closed set in (X, Γ) .

Proof:

Let A be a fuzzy δg^* – closed set in (X, τ) . Given $A \leq B \leq fc l \delta(A)$.

Suppose $B \le H$ where H is fuzzy g -super open set. Since $A \le B \le H$ and A is a fuzzy δg^* -super closed set, we get $fcl\delta(A) \le H$.

As
$$B \leq fcl\delta(A)$$
, $fcl\delta(B) \leq fcl\delta(fcl\delta(A)) = fcl\delta(A)$ we get $fcl\delta(B) \leq H$.

Hence B is a fuzzy δg^* – super closed set in (X, Γ) .

1.20 Theorem If A is a fuzzy δg^* - closed set in (X, τ) and $fint\delta(A) \leq B \leq A$, then B is δg^* - super open set in (X, τ) .

Proof:

Let A be a fuzzy δg^* – open set and **B** be any fuzzy set in X.

such that $fint\delta(A) \le B \le A$, then 1 - A is a fuzzy δg^* - closed set and

 $1 - A \le 1 - B \le fcl\delta(A)$, as $1 - fint\delta(A) = fcl\delta(1 - A)$.

Therefore 1 - B is a fuzzy δg^* – super closed.

Hence **B** is a fuzzy δg^* – super open.

1.21 Theorem Every fuzzy closed set is a fuzzy strongly g^* -super closed set in the fuzzy topological space (X, Γ) .

Proof:

Let A be fuzzy super closed set in X and X be a fg – super open set in X such that $A \le H$. Since A is fuzzy super closed, cl(A) = A. Therefore $cl(A) \le H$.

а

Now, $cl(int(A)) \leq cl(A) \leq H$.

Hence A is fuzzy strongly g^* -super closed set in X.

REFERENCES:

- 1. N.Livine, Generalized closed in topology, Rand, circ Mat.Palermo, 19(2)(1970) 571-599.
- M.K Mishra and M.Shukla on Fuzzy strongly g* –super closed sets International Journal of Research in Engineering. VOLUME 6,ISSUE 5(MAY,2016)
- 3. M.K Mishra and M.Shukla Fuzzy strongly G*-super closed sets and fuzzy δg^* -super closed sets. International Journal of Fuzzy mathematical Archive.Vol.10,2016,155-160.
- 4. N.Palaniappan and K.C.Rao, regular generalized closed sets, kyungpook Math J., 3392 (1932) 11-219.
- 5. T.Rajendrakumar and G.Anandajothi on fuzzy strongly g* super closed sets in fuzzy topological spaces .International Journal of Fuzzy mathematical Archive.Vol.3,2013,68-75.
- M.K.R.S. Verrakumar, Between closed sets and g-closed sets, mem.fac, sci.Kochi Univ, Ser.A.Math., 17 (21)(2000) 1-19.

