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ABSTRACT 
Elliptic curve cryptography (ECC) is an alternative approach for RSA scheme. Compared to its traditional 

counter parts, ECC offers the same level of security using much smaller keys. This result in faster computations 

and savings in memory, power and bandwidth those are especially important in constrained environments. More 

significantly, the advantage of ECC over its competitors increases, as the security needs increase over time. The 

present paper consist of an introduction of a multi self- pairing bilinear map on finitely generated free R -modules 

with rank three, where R  is a commutative ring with unity. A multi self bilinear pairing on elliptic curve is 

constructed and we used this pairing map to generate secret shared key for a group communication.  
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1. INTRODUCTION 
 

Recently authors, Kumar and Gupta [11] obtained cryptographic schemes based on elliptic curves over the ring 

[ ]pZ i . In the present paper, we introduced a multi self- pairing bilinear map on finitely generated free R -modules 

with rank three, where R  is a commutative ring with unity. We used this pairing map to generate secret shared 

key for group communication. In the recent years, pairing based cryptographic schemes on elliptic curve have been 

a very active field of research in cryptography. The concept of pairing in cryptography was first introduced by 

Weil [19]. Generally pairings map pairs of points on an elliptic curve into the multiplicative group of a finite field. 

The use of pairings in cryptography has developed at an extraordinary pace since the publication of the paper of 

Joux [8].  Joux’s paper is of great interest to cryptographers, who want to start investigating further applications of 

pairings. The next two important applications of pairings are the identity-based encryption scheme of Boneh and 

Franklin [2] and the short signature scheme of Boneh, Lynn and Shacham [3]. Since then, there has been a flurry 

of activity in the design and analysis of cryptographic protocols using pairings. Pairings have been accepted as an 

indispensable tool for the protocol designer. There has also been a tremendous amount of work on the realization 

and efficient implementation of bilinear pairings using the Tate pairing on elliptic curves, hyperelliptic curves, and 

more general kinds of abelian varieties [7, 9, 13, 15, 17, 18]. 

 

Let E  with 2 3y x ax b    be an elliptic curve defined over a finite field F . Then, we know that [6, 10, 14, 

16] each elliptic curve point can be described by two coordinates ,x y F . In this case we say that elliptic curve 

points belong to two dimensional affine plane
2 {( , ) }FA x y F F   . Suppose the coordinates ( , )x y  of the affine 

plane 
2 {( , ) }FA x y F F    are mapped to the coordinates ( , , )X Y Z  of projective plane 

3 {( , , ) }FP X Y Z F F F    as  

                                   ( , , ) ( . , . ,1)c dX Y Z x Z y Z or / cx X Z  and / dy Y Z                                    (1) 

where ,c d are integers. 

After applying the Jacobian projective transformation with 2c  and 3d  , elliptic curve E  can be rewritten 

as  
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2 3 4 6:E Y X aXZ bZ   . 

If 1 1 1 1( , , )P X Y Z and 2 2 2 2( , , )P X Y Z are two distinct points on the projective plane then their point addition 

 3 3 3 3 1 2( , , )P X Y Z P P   and point doubling 3 1( 2 )P P can be described as follows: 

 

1.1 Addition of Two Distinct Points: 

Case-I : If 1 2x x  then  we have 

   

2 1

2 1 2 1 2 1 1 2 2 1

2 12 1 2 1 1 2 2 1

2 1

( )

( )

d d d d c c

c c d d

c c

Y Y

y y Z Z Y Z Y Z Z Z

X Xx x X Z X Z Z Z

Z Z




 

  
 

 

It is obvious from above expression that   exist because 1 2x x . 

Now the point 3P can be calculated as 

2

2 2 1 1 2 2 1 1 2 2 1
3 1 2

2 1 1 2 2 1 2 1

( )

( )

d d c c c c

c c d d c c

Y Z Y Z Z Z X Z X Z
x x x

X Z X Z Z Z Z Z


  
     

  

 

           
3 3 2 2 2

2 1 1 2 2 1 1 2 2 1 2 1 1 2 2 1

2 2
2 1 1 2 2 1

( ) ( )( )

( )

d d c c c c c c d d

c c d c d c

Y Z Y Z Z Z X Z X Z X Z X Z Z Z

X Z X Z Z Z 

   



 

3 1 3 1( )y x x y    

                    

2 3 3 2 2 2
2 1 1 2 2 1 1 2 1 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1

2 2
2 1 1 2 2 1 1 2 1 1 2 2 1 1

( ) ( ) ( )( )

( ) ( )

d d c c d d c c c c c c d d

c c d d c c c d c d c d

Y Z Y Z Z Z X Y Z Y Z Z Z X Z X Z X Z X Z Z Z Y

X Z X Z Z Z Z X Z X Z Z Z Z 

     
   

   

 

                     

2 2 2 2 3 3
2 1 1 2 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 1

2 2
2 1 1 2 2 1 2 1 1 2 2 1 1

( ) (2 )( ) ( )

( ) ( )

d d c c c c c c d d d d c c

c c d d c c d c d c d

Y Z Y Z Z Z X Z X Z X Z X Z Z Z Y Z Y Z Z Z Y

X Z X Z Z Z X Z X Z Z Z Z 

     
  

   

 

 

    
2 2 2 3 4 4

2 1 1 2 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 1

3 3
2 1 1 2 2 1 1

( )(2 )( ) ( )

( )

d d c c c c d c d c d d c c

c c d c d c d

Y Z Y Z X Z X Z X Z X Z Z Z Y Z Y Z Z Z Y

X Z X Z Z Z Z

 

 

    
 


 

     

     
2 2 2 3 3 3

2 1 1 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 1 1 2 2 1

3 3
2 1 1 2 2 1

(( )(2 ) ( ))( ) ( )

( )

d d c c d c c c c d d d d c c

c c d d

Y Z Y Z X Z X Z Y Z X Z X Z X Z X Z Z Z Y Z Y Z Z Z

X Z X Z Z Z

      




 

Using (1) and Jacobian projective transformation with 2c  and 3d  , 3P  is given by  

  3 3 2 2 2 2 2 2
3 2 1 1 2 1 2 2 1 2 1 1 2( ) ( )( )X Y Z Y Z X Z X Z X Z X Z     , 

  
3 3 2 2 3 2 2 3 3 3

3 2 1 1 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2(( )(2 ) ( )) ( )Y Y Z Y Z X Z X Z Y Z X Z X Z Y Z Y Z       , 

and   
2 2

3 2 1 1 2 2 1( )Z X Z X Z Z Z  . 

Case-II : If 1 2x x  then  we have 3 1 2P P P O   , where O  is the point at infinity of the elliptic curve E  in 

projective coordinates. It can be easily seen that for Jacobian projective coordinates, the point at infinity has the 

form (1,1,0) .  

 

1.2 Addition of Two Equal Points: 

For point doubling we can take 1 2P P then  3 1 2 1 3 3 32 ( , , )P P P P X Y Z    . 

We have  

                 
2 2 2

1 1 1 1

2
1 1 1

3 3

2 2

d c d

c

x a X Z aZ

y Z Y
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Obviously  exists if 1 0y  . So we get 

 
2 2 2 2 2 2 2 2 3 2

2 1 1 1 1 1 1 1 1 1 1
3 1 4 2 4 2

1 1 1 1 1

(3 ) (3 ) 8
2 2

4 4

c d c d c

c c c

X aZ Z X X aZ Z Z X Y
x x

Z Y Z Z Y


  
      

 2
3 1 3 1 1 1( ) (3 )y x x y x y         

     
2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

2 4 2
1 1 1 1 1 1

(3 ) (3 )
3

2 4

c d c d

c c c d

X aZ Z X X aZ Z Y

Z Y Z Z Y Z

  
   

 
 

 

     
2 2 2 2 3 2 2 2 3 4 6 4

1 1 1 1 1 1 1 1 1 1

6 3
1 1

12 (3 ) (3 ) 8

8

c c d c d c

c d

X Y X aZ Z X aZ Z Z Y

Z Y





   
  

Using (1) and Jacobian projective transformation with 2c  and 3d  , the doubling of point 1P  is given by 

3 3 3 3( , , )P X Y Z  

where 
2 4 2 2

3 1 1 1 1(3 ) 8X X aZ X Y   , 

 2 2 4 2 4 3 4
3 1 1 1 1 1 1 112 (3 ) (3 ) 8Y X Y X aZ X aZ Y     , 

and  3 1 12Z Z Y . 

Point subtraction can be performed as 3 1 2 1 2( )P P P P P       where 2P  is the additive inverse of 2P and 

2 2 2 2( , , )P X Y Z   . 

Here it is remarkable that we are no need of division and multiplication operations for calculating elliptic curve  

point 3P on the projective plane.  

 

2. CONSTRUCTION OF BILINEAR SELF PARING MAP 
 

In this section we will construct a multi self-pairing on finitely generated free R -modules with rank 3. At the end 

of this section we will also discuss an auxiliary result which will be helpful in the next section.  

According to the terminology as in the references [1, 3, 4, 5], let R  be a commutative ring with unity, P  be a 

finitely generated free R -module with rank 3 and ( , , )l m n  be a generating pair for P . We consider 

elements 1 1 1a u l v m w n   , 2 2 2b u l v m w n   , 3 3 3c u l v m w n   in P , where , ,i i iu v w P for each 

1,2,3i  . 

For some fixed , , R     where all ,  and  are not zero at the same time, we construct a pairing map   

 

     , , :f P P P P                                                                 (2) 

 

defined by 

                      , , 1 2 3 3 2 1 3 2 2 3 1 2 3 3 2( , , ) [ ( ) ( ) ( )].( )f a b c u v w v w v u w u w w u v u v l m n                                (3) 

It can be easily seen that the pairing map (2) defined by (3) is non- trivial and well defined map. 

For this, if 'a a , 'b b and 'c c then we have '
i iu u , '

i iv v  and '
i iw w  for each 1,2,3i   by 

independency of ( , , )l m n . This implies , , , ,( , , ) ( ', ', ')f a b c f a b c      . Therefore the map is well defined. 

 

Proposition-1[12]:  The pairing , , ( , , )f a b c   has the following properties: 

(i) Identity :  , , ( , , ) 0f a a a     for all a P . 

(ii) Bilinearity : If , , ,a b c d P then we have 

  , , , , , ,( , , ) ( , , ) ( , , )f a b c d f a c d f b c d           , 

  , , , , , ,( , , ) ( , , ) ( , , )f a b c d f a b d f a c d           , 

and                      , , , , , ,( , , ) ( , , ) ( , , )f a b c d f a b c f a b d           . 

(iii) Anti- symmetry : , , , ,( , , ) ( , , )f a b c f b c a        for all , ,a b c P . 

(iv) Non- degeneracy : If , ,a b c P then , , , , , ,( , ,0) 0 ( ,0, ) (0, , )f a b f a c f b c           .  

Also, if , , ( , , ) 0f a b c    for all ,b c P , then 0a  . 

Moreover, if , , ( , , ) 0f a b c    for all c P then a kb for some constant k . 
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3. CONSTRUCTION OF BILINEAR SELF PARING MAP ON ELLIPTIC CURVES 
 

In this section, we will extend the multi self pairing (constructed in previous section) on elliptic curve over the 

finite fields. At the end of this section we will also discuss an auxiliary result which will be useful in the next 

section.  

Let E  be an elliptic curve. Then a point P E  is said to be a torsion point[18] if there exist a positive integer 

m  such that mP O . The smallest such integer is called the order of P . An n -torsion point is a point P E  

satisfying nP O . 

Also let K  be a field with characteristic zero or a prime p ( p  is relatively prime to n ) and let 

( )E E K be an elliptic  curve over K  where K  is an algebraic closure of K . Also let ( )[ ]E K n denote the 

subgroup of n -torsion point in ( )E K , where 0n  . 

For our simplicity we will denote ( )[ ]E K n  by [ ]E n .  

It can be easily checked that [ ] n n nE n Z Z Z   . 

Let { , , }U V W for some fixed generating pair for [ ]E n . Then the points , , [ ]P Q R E n  can be expressed as 

1 1 1P a U bV c W   , 2 2 2Q a U b V c W   , 3 3 3R a U b V c W   , where , ,i i ia b c for each 1,2,3i  are integers 

in [0, 1]n .  

Now for some fixed integers , , [0, 1]n     ,where all , ,    are not zero at the same time, we construct a 

map  

      

     , , : [ ] [ ] [ ] [ ]nf E n E n E n E n             (4) 

defined by  

                  , , 1 2 3 3 2 1 3 2 2 3 1 2 3 3 2( , , ) [ ( ) ( ) ( )].( )nf P Q R a b c b c b a c a c c a b a b U V W                           (5) 

It can be easily checked the map (4) defined by (5) is well defined. 

 

Proposition-2[12] : The pairing map , , ( , , )nf P Q R   constructed as above, satisfies the following postulates : 

(i) Identity : , , ( , , )nf P P P O    for all [ ]P E n . 

(ii) Bilinearity : If  , , , [ ]P Q R S E n , then we have 

   , , , , , ,( , , ) ( , , ) ( , , )n n nf P Q R S f P R S f Q R S           , 

   , , , , , ,( , , ) ( , , ) ( , , )n n nf P Q R S f P Q S f P R S           , 

and                             , , , , , ,( , , ) ( , , ) ( , , )n n nf P Q R S f P Q R f P Q S           . 

(iii) Anti-symmerty : , , , ,( , , ) ( , , )n nf P Q R f Q P R        for all , , [ ]P Q R E n . 

(iv) Non-degeneracy : If , , [ ]P Q R E n then , , , , , ,( , , ) ( , , ) ( , , )n n nf P Q O O f P O R f O Q R           .  

Also if , , ( , , )nf P Q R O    for all , [ ]Q R E n , then P O . 

Moreover if , , ( , , )nf P Q R O    for all [ ]R E n , then P kQ for some constant k . 

(v) Compatibility : If [ ]P E nk , [ ]Q E n and [ ]R E n then , , , ,( , , ) ( , , )n nf kP Q R kf P Q R      , 

if [ ]P E n , [ ]Q E nk and [ ]R E n then , , , ,( , , ) ( , , )n nf P kQ R kf P Q R      , 

also [ ]P E n , [ ]Q E n and [ ]R E nk then , , , ,( , , ) ( , , )n nf P Q kR kf P Q R      . 

 

 

4. CRYPTOGRAPHIC APPLICATIONS 
 

In this section we will apply multi self bilinear pairing (constructed in previous section) to elliptic curve 

cryptography. A protocol is a multi-party algorithm, defined by a sequence of steps precisely specifying the 

actions required by three or more parties in order to achieve a specified objective.  Key establishment  is a  

process  or  protocol  whereby  a shared  secret becomes available  to three or more parties,  for subsequent  

cryptographic use. A key agreement protocol is a key establishment  technique  in which a shared  secret is 

derived by three (or more) parties  as a function  of information contributed by, or associated with, each of 

these, such that no party can predetermine  the resulting  value. The key agreement protocol is contributory if 
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each party equally contributes to the key and guarantees its freshness. Key authentication is the property 

whereby one party is associated that no other party aside from an especially identified second party may gain 

access to a particular secret key. Key authentication is said to be implicit if each party sharing the key is 

assured that no other party can learn the secret shared key. 

For a prime number p ( p is large enough) and a positive integer r , we denote rq p . Let E be an elliptic 

curve over a finite field qF   . Then given ( )qP E F  with order n and Q P , to find k  such that Q kP , is 

known as elliptic curve discrete log problem (ECDLP)  in ( )qE F . Also for given , ,P aP bP   to find abP  is 

known as Diffie-Hellman problem for elliptic curves. Actually it is known as Diffie-Hellman  key exchange 

protocol  for elliptic curves. 

Now the proposed cryptographic schemes can be described as follow : 

(i) We Select a large prime s such that [ ] ( )kq
E s E F for some smallest integer k .  

(ii) Next we select a generating pair { , , }U V W  in [ ]E s and integers , , [0, 1]l     which determine 

      the pairing , ,
sf    . 

Let the parameters , ,( , , , )sP Q R f    be publicly known and let : ( ) /qh E F Z l  be hash functions.  

Now our proposed , ,
sf    - pairing can be apply to cryptographic scheme namely authenticated key 

agreement on elliptic curves. To apply the proposed scheme, we assume that three communication parties Alice, 

Bob and Carol wish to share a common secret information. Now we are in the position to explain authenticated 

elliptic curve Diffie-Hellman key agreement for three parties, which consists of the following phases: 

Phase-I: It consists of the following steps 

1) Alice, Bob and Carol randomly select secret integers , , (1, 1)a b c s   respectively.  

2) They respectively compute , ,aP bP cP . 

3)  They broadcast the above computed values. 

 Now the public values of the system are , ,( , , , , , , )sP Q R aP bP cP f    . 

       Phase-II: It consists of the following steps 

1)  Alice computes . .AS a bP cP abcP  (because [ ]P E n ) and , , ( , , )sf aP Q R   . She sends 

, ,( ) ( , , )s
Ah S f aP Q R    to Bob and Carol. 

2) Bob computes . .BS b aP cP abcP   and , , ( , , )sf bP Q R   . He sends , ,( ) ( , , )s
Bh S f bP Q R   to 

Alice and Carol. 

3) Carol computes . .CS c aP bP abcP   and , , ( , , )sf cP Q R   . He sends , ,( ) ( , , )s
Ch S f cP Q R   to 

Alice and Bob. 

It is evident that A B C ABCS S S abcP S    (say). 

     Phase-III: It consists of the following steps 

1) Alice receives ),,()(),,()( ,,,, RQcPfShRQbPfShI S

C

S

BA   

Using the bilinearity of pairing , ,
sf    , Alice obtains , ,( ) ( , , )s

A ABCI h S bcf P Q R   . 

         Alice computes 
1( ) (mod )Ah S s

 to obtain her secret share key as 
1( )A A AK ah S I . 

2) Next Bob receives ),,()(),,()( ,,,, RQcPfShRQaPfShI S

C

S

AB   

),,()( ,, RQPacfSh S

CBA   

            To obtain secret share key, Bob calculates 
1( ) (mod )Bh S s

and compute his shared secret key as 

1( )B B BK bh S I . 

3) Finally  Carol receives ),,()(),,()( ,,,, RQbPfShRQaPfShI S

B

S

AC   

      ),,()( ,, RQPabfSh S

CBA   

            

To obtain secret share key, Carol calculates 
1( ) (mod )Ch S s

and compute his shared secret key as        

1( )C C CK ch S I . 
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It can be easily verified that , , ( , , )s
A B CK K K abc f P Q R K      (say). 

Thus there has been established an authenticated common secret key among multiparty Alice, Bob and Carol. 

 

5. SECURITY ANALYSIS   
 

It is obvious from the proposed authenticated elliptic curve Diffie Hellman protocol that the common secret key 

, , ( , , )sK abc f P Q R   is designed by the contribution of each involved party (Alice, Bob, Carol). This results 

in the complexity for the attacker. 

For this suppose an active adversary is capable to reform, delay or interpose the message. Now possible attacks 

on Bob and Carol can be described as: 

If BK or CK  secret common key calculated by Bob or Carol, then it can be represented as 

, , 1( , , )s
BK b f d P Q R   or , , 2( , , )s

CK c f d P Q R   where 1d  or 2d are introduced by adversary. It means 

that adversary can alter the first flow of the proposed protocol with , , 1( , , )sf d P Q R   or , , 2( , , )sf d P Q R   . To 

compute , , 1( , , )sbf d P Q R   or , , 2( , , )scf d P Q R   adversary requires to calculate , , ( , , )sbf P Q R    or 

, , ( , , )scf P Q R   respectively. But in the second flow, the only expression calculating , , ( , , )sbf P Q R    or 

, , ( , , )scf P Q R   is , ,( ) ( , , )s
Bh S f bP Q R   or , ,( ) ( , , )s

Ch S f cP Q R   respectively. This shows that for adversary 

to compute  , , ( , , )sbf P Q R    or , , ( , , )scf P Q R   respectively from , ,( ) ( , , )s
Bh S f bP Q R   or 

, ,( ) ( , , )s
Ch S f cP Q R   is intractable without the knowledge of BK or CK . 

Similarly attack on Alice can be described as: 

Suppose key calculated by Alice is 
1

, , 3( ) ( , , )s
A AK ah S f d P Q R  

 where 3d is introduced by the 

adversary. Now if assume that 3 4 ( )Ad d h S where 4d is known by adversary and independent of ( )Ah S , then 

   1
, , 4 , , 4( ) ( ) , , , ,s s

A A AK ah S f d h S P Q R af d P Q R     
  . Also to calculate  4 , ,( ) , ,s

Ad h S f P Q R   , 

where 4d is known by adversary, is intractable without calculating  , ,( ) , ,s
Ah S f P Q R   . Further if 3d is 

independent of ( )Ah S , then it is impossible to calculate the key of Alice because AK  depends upon 1( )Ah S  . 

 

6. CONCLUSIONS 
 

Using , ,
sf    - pairing in cryptography is based on the difficulty of computing , ,( ) ( , , )s

Bh S f bP Q R   , 

, ,( ) ( , , )s
Ch S f cP Q R   and , ,( ) ( , , )s

Ah S f aP Q R   , without knowing the secret values ,a b and c ( of Alice, Bob 

and Carol respectively ) in the construction of the self pairing bilinear map , ,
sf    . To compute 

, , 1( , , )sbf d P Q R    or , , 2( , , )scf d P Q R   , adversary requires to calculate , , ( , , )sbf P Q R    or 

, , ( , , )scf P Q R   respectively. But in the second flow the only expression calculating , , ( , , )sbf P Q R    or 

, , ( , , )scf P Q R    is , ,( ) ( , , )s
Bh S f bP Q R    or , ,( ) ( , , )s

Ch S f cP Q R   respectively. This shows that for 

adversary to compute  , , ( , , )sbf P Q R    or , , ( , , )scf P Q R   respectively from , ,( ) ( , , )s
Bh S f bP Q R   or 

, ,( ) ( , , )s
Ch S f cP Q R   is intractable without the knowledge of BK or CK . Furthermore to 

calculate  4 , ,( ) , ,s
Ad h S f P Q R   , where 4d  is known by adversary, is intractable without 

calculating  , ,( ) , ,s
Ah S f P Q R   . In fact, it is impossible to calculate the secret key of Alice because her 

key AK  depends upon 1( )Ah S  . Thus , ,
sf    pairing with only public values is as hard as solving the discrete 

logarithm problem on elliptic curves. Our schemes include only one random secret key per user. This is more 

efficient and secure than using two random secret keys in the known schemes existing in the literature. 
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