
Vol-6 Issue-1 2020  IJARIIE-ISSN(O)-2395-4396 
 

11255 www.ijariie.com 1016 

AN EXPLORATORY ON STUDY GRACE’S THEOREM 

AND ITS GENERALIZATIONS 

Dr. Gyan Shekhar
1
, Ab Waheed Lone

2
  

 
1
Assistant Professor, Department of Mathematics, Bhagwant University, Ajmer, India 
2
Research Scholar, Department of Mathematics, Bhagwant University, Ajmer, India 

 

ABSTRACT 

 
In this paper we are studding Study an Exploratory on Study Grace’s Theorem and Its Generalizations. 

As an application of Laguerrer's theorem, we will next introduce a result, known as the Grace theorem and which 

concerns further with the relative location of the zero of the two a polar polynomials. But before we state this result, we 

will first define the apolar polynomial. 
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1. INTRODUCTION 

We have obtained generalizations of (i), G (z) is treated as any polynomial of degree n and C with a circular 

region (consisting of 0) or convex complement and (ii) normalization. Not to be a circular area. Assuming g 

(z) as any polynomial of degree, n and C cannot be considered to be a spherical region (not containing 0) or a 

convex circular region. We have applied these generalizations to the study of the zeros (derived from two 

given polynomials) of some mixed polynomial, leading to some generalizations of Cézégo's theorem. 

Mathematis zeitschrift, incorporating circular regions (with a characteristic). 

The Bôcher-Grace Theorem can be stated as follows: Let p be a third degree complex polynomial. Then 

there is a unique inscribed ellipse interpolating the midpoints of the triangle formed from the roots of p, and 

the foci of the ellipse are the critical points of p. Here, we prove the following generalization: Let p be 

an nth degree complex polynomial and let its critical points take the form 

α+βcoskπ/n,k=1,...,n−1,β≠0. 

Then there is an inscribed ellipse interpolating the midpoints of the convex polygon formed by the roots of p, 

and the foci of this ellipse are the two most extreme critical points of p: α±βcosπ/n. 

The fundamental theorem of algebra implies that each complex polynomial of degree n is numbered with 

multiplicity. Grace's theorem is a powerful tool that is used to obtain more precise information about the 

location of zeros of a polynomial. In particular it is useful when investigating how the null behaves under 

some transformations of the polynomial. Recall that the convex hull of a set S the C is the smallest convex 

set, in which S, that is, the square of all closed (circles), including the even-plane. 

Suppose ƒ(z1, ..., zn) is a polynomial with complex coefficients, and that it is symmetric, i.e. invariant 

under permutations of the variables, and multi-affine, i.e. affine in each variable separately. 

 

 

https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Permutation
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2. EXAMPLES 

 

 

This can be verified by noting that p(x) can be factored as (x2 − 1)(x2 + x + 1), where the first factor has the 

roots −1 and 1, and second factor has no real roots. This last assertion results from the quadratic formula, and also 

from  theorem, which gives the sign sequences (+, –, –) at −∞ and (+, +, –) at +∞. 

3. THEOREM AND LEMMA 

THEOREM      If  

 

 
are two polynomials degree  and  respectively  such that 

, 

then the following holds. 

https://en.wikipedia.org/wiki/Quadratic_formula
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(i)   has all its zeros in  then   has at least one zero in . 

(ii)   has all its zeros in , then  has at least one zero in . 

        For the proof of the Theorem 4.4, we need the following lemma, which is a generalization of a result due to 

Markovitch [37, p. 64]. 

LEMMA     Let 

 

 
be two polynomials of degree  and , respectively . If we form  

 
then  

 
PROOF OF LEMMA   Since  and  are two polynomials of degree  and  respectively, we have 

 
Now we can write  

 

 
from which it follows that,  

 
and     

 
Now  

 

 
so that by (3.24), we have  
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therefore  is constant and thus 

 
Using (3.25) and (3.26), we obtain  

 
This proves the lemma. 

4 GENERALIZATIONS 

Grace sequences have been generalized in two directions. To define each polynomial in the sequence, Grace used the 

negative of the remainder of the Euclidean division of the two preceding ones. The theorem remains true if one replaces 

the negative of the remainder by its product or quotient by a positive constant or the square of a polynomial. It is also 

useful (see below) to consider sequences where the second polynomial is not the derivative of the first one. 

A generalized Grace is a finite sequence of polynomials with real coefficients 

P0, P1……….Pm 

such that 

 the degrees are decreasing after the first one: degP1<deg Pi-1 for i = 2, ..., m; 

 Pm does not have any real root or does not changes of sign near its real roots. 

 if Pi(ξ) = 0 for 0 < i < m and ξ a real number, then Pi −1 (ξ) Pi + 1(ξ) < 0. 

The last condition implies that two consecutive polynomials do not have any common real root. In particular the 

original Grace sequence is a generalized Grace sequence, if (and only if) the polynomial has no multiple real root 

(otherwise the first two polynomials of its Grace sequence have a common root). 

When computing the original Grace sequence by Euclidean division, it may happen that one encounters a polynomial 

that has a factor that is never negative, such a  x
2
 or x

2
+1 . In this case, if one continues the computation with the 

polynomial replaced by its quotient by the nonnegative factor, one gets a generalized Grace sequence, which may also 

be used for computing the number of real roots, since the proof of Grace's theorem still applies (because of the third 

condition). This may sometimes simplify the computation, although it is generally difficult to find such nonnegative 

factors, except for even powers of x. 

 

5. APPLICATION 

 

Generalized Grace allow counting the roots of a polynomial where another polynomial is positive (or negative), without 

computing these root explicitly. If one knows an isolating interval for a root of the first polynomial, this allows also 

finding the sign of the second polynomial at this particular root of the first polynomial, without computing a better 

approximation of the root. 

Let P(x) and Q(x) be two polynomials with real coefficients such that P and Q have no common root and P has no 

multiple roots. In other words, P and P' Q are coprime polynomials. This restriction does not really affect the generality 

of what follows as GCD computations allows reducing the general case to this case, and the cost of the computation of 

a Graces  is the same as that of a GCD. 

Let W(a) denote the number of sign variations at a of a generalized Gracesequence starting from P and P' Q. If a < b are 

two real numbers, then W(a) – W(b) is the number of roots of P in the (a,b) such that Q(a) > 0 minus the number of 

roots in the same interval such that Q(a) < 0. Combined with the total number of roots of P in the same interval given by 

Sturm's theorem, this gives the number of roots of P such that Q(a) > 0 and the number of roots of P such that Q(a) < 

0.[1] 

 

 

 

https://en.wikipedia.org/wiki/Euclidean_division
https://en.wikipedia.org/wiki/Coprime
https://en.wikipedia.org/wiki/Polynomial_greatest_common_divisor
https://en.wikipedia.org/wiki/Sturm%27s_theorem#cite_note-bpr-1
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