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ABSTRACT 

A fused floating-point three term adder performs two additions in a single unit.It has better 

performance and accuracy compared to a network of discrete design. To improve the performance of 

three term adder, several optimization techniques are used. Brent kung adder is used in this 

architecture to achieve reduction in area. The proposed design is implemented for single precision and 

synthesized with a 45 nm cmos standard cell library. 

 

 

INTRODUCTION        

Addition is the most frequently used operation in many algorithms and applications. In case of the 

additions in series, however, a network of the two term adders loses accuracy due to the multiple 

roundings one after each addition. Many recent floating-point units can accommodate operations that 

have three inputs. Issues for the design of the fused floating-point three-term adder are (1)Complex 

exponent processing and significand alignment, (2)Complementation after the significand addition, 

(3)Large precision significand addition, (4)Massive cancellation management, and (5)Complex round 

processing. Those issues are addressed by investigating several optimization techniques in previous 

work. In this work the area is further reduced by replacing Kogge-Stone adder with Brent-Kung adder. 

The improved fused floating-point three-term adder will contribute to the next generation of floating-

point arithmetic unit design. 

 

OPTIMIZATION TECHNIQUES 

 
1. EXPONENT COMPARE AND SIGNIFICAND ALIGNMENT 

 
 It is necessary to determine the largest exponent and aligned significands to handle the three operands. 

The traditional fused floating-point three-term adder determines the largest exponent based on the 
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exponent differences. Then, the exponent differences are used for the significand alignment. This 

approach requires performing the exponent subtractions, complementation and significand shift 

sequentially, which takes a large latency. In order to reduce the latency, a new exponent compare and 

significand alignment logic is proposed. Six subtractions are performed to compute all the 

combinations of exponent differences                                              

                               . In each pair of differences, an absolute value is selected based 

on the exponent comparison result, which enables skipping the complementation after the subtractions. 
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Fig.1 An improved fused floating-point three-term adder 
 

 

 

 
2. INVERT AND DUAL-REDUCTION 
The sign logic generates the three effective sign bits (                               ) based on 

the three sign bits and two op codes as 
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                            ) 

                                                                       
 

Where    and     are the first and second op codes, respectively. The aligned significands are 

inverted based on the effective sign bits for the subtraction. The three operand subtraction requires that 

up to two significands are complimented. If all three operands are negative, they are added and the sign 

becomes negative, that is –A-B-C = -(A+B+C). In order  to avoid the increments after the inverters, 2 

bits are extended to the LSB of the significands that are propagated to the significand addition to 

handle the cases that one or two significands are inverted by effectively adding 1 or 2, respectively.  

 
3. EARLY NORMALIZATION 
One of the design issues for the fused floating-point three term adder is the high precision significand 

addition. The traditional fused floating-point three-term adder aligns the significands to 2f+6 bits, 

where f is the number of significand bits. Such large significands require a large significand addition 

and normalization, which the biggest bottleneck of the fused floating-point three-term adder. To reduce 

the overhead, early normalization is applied. The normalization is performed prior to the significand 

addition so that the significand adder size is reduced to f+1 bits. The rest of lower bits (f+7) are passed 

to rounding. By normalizing the significand pair prior to the significand addition, the round position is 

fixed so that the significand addition and rounding can be performed in parallel, which significantly 

reduces the latency of the critical path. 

 

4. THREE-INPUT LZA AND SIGNIFICAND COMPARISON 

Since the normalization is performed prior to the significand addition, the LZA and normalization is on 

the critical path. To use a traditional two-input LZA, the three significands need to be reduced to two 

using a 3:2 CSA, which increases the delay. The three-input LZA encodes the three inputs at once to 

skip the delay of the 3:2 CSA. The three-input LZA can be implemented by extending the traditional 

two-input LZA. Like most of the LZAs, the three-input LZA consists of two parts: 1) Pre-encoding 

indicator vectors and 2) Leading Zero Detection (LZD) logic for generating the leading zero count.  

 
5. COMPOUND ADDITION AND ROUNDING 
The normalized significand pair is passed to the significand addition and rounding. As described 

above, the upper significand bits are used for the addition and the lower bits are used for the rounding. 
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In the two-term adder, only one significand is shifted for the alignment so that there is no carry 

propagation for the lower part. 

The compound addition determines the upper f bits including possible two overflow bits, and the 

rounding determines the rest of three LSBs and the round decision. The upper f+1 bits are passed to the 

compound addition, which produces sum and sum+1 simultaneously. Two significand sums are right 

shifted by up to 2 bits based on the overflow bits. Then, one correct significand sum is selected based 

on the round decision. 

 

6. BRENT KUNG ADDER 
The earlier fused floating point adders used Kogge-Stone adder. In this paper, the Kogge-Stone adder 

is replaced with the Brent-Kung adder inorder to reduce the adder size Brent- Kung is a parallel prefix 

form of the carry look ahead adder. It takes less area to implement than the other prefix adders such as 

Kogge- Stone adder and it also has less wiring congestion. Instead of using a carry chain to calculate 

the output, the method shown in Fig.2  is used. 

 

 

 

Fig.2  4-bit Brent-Kung Adder 

 

 

This will reduce the delay without compromising the power performance of the adder. Replacing the 

Kogge-Stone adder with the above structure of Brent-Kung adder in the part of addition we can see 

that there is significant reduction in area. 
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RESULTS AND COMPARISON 

The proposed design is implemented for single precision in Verilog-HDL and synthesized with the 

Nangate 45 nm CMOS technology standard cell library. In order to evaluate the improvement of the 

proposed design, the area and delay are compared with the previous designs. Depending on the target 

frequency, the implementations are synthesized with different area and delay. Table 1 compares the 

logic utilization of Kogge-stone adder and Brent-kung adder. Even though the delay for both adder is 

same, the area covered is smaller for Brent-kung adder. Thus the power consumption also become 

lower. The proposed design has a smaller significand adder size compared to the traditional designs. 

 

Table 6.1 Logic utilization comparison 

 
Logic utilization Kogge-Stone adder Brent-Kung adder 

Number of slice registers 59 59 

Number of slice LUTs 1028 923 

Number of fully used LUT-FF pairs 59 59 

Number of bonded IOBs 1658 1658 

Delay 14.387 ns 14.387 

 

CONCLUSION 

The improved architecture design and implementation for a fused floating-point three-term adder has 

been presented. There are several critical design issues for the fused floating-point three-term adder: 1) 

Complex exponent processing and significand alignment, 2) Complementation after the significand 

addition, 3) Large precision significand adder, 4) Massive cancellation management, and 5) Complex 

round processing. To resolve those issues, several algorithms and optimization techniques are applied. 

For further improvement, Kogge-stone adder is replaced with Brent-kung adder which reduces the 

area. 
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