
Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5274 www.ijariie.com 1665

AN IMPROVED FUSED FLOATING-POINT

THREE-TERM ADDER

Mohyiddin K , Nithin Jose, Mitha Raj, Muhamed Jasim TK, Bijith PS,

Mohamed Waseem P

ABSTRACT

A fused floating-point three term adder performs two additions in a single unit.It has better

performance and accuracy compared to a network of discrete design. To improve the performance of

three term adder, several optimization techniques are used. Brent kung adder is used in this

architecture to achieve reduction in area. The proposed design is implemented for single precision and

synthesized with a 45 nm cmos standard cell library.

INTRODUCTION

Addition is the most frequently used operation in many algorithms and applications. In case of the

additions in series, however, a network of the two term adders loses accuracy due to the multiple

roundings one after each addition. Many recent floating-point units can accommodate operations that

have three inputs. Issues for the design of the fused floating-point three-term adder are (1)Complex

exponent processing and significand alignment, (2)Complementation after the significand addition,

(3)Large precision significand addition, (4)Massive cancellation management, and (5)Complex round

processing. Those issues are addressed by investigating several optimization techniques in previous

work. In this work the area is further reduced by replacing Kogge-Stone adder with Brent-Kung adder.

The improved fused floating-point three-term adder will contribute to the next generation of floating-

point arithmetic unit design.

OPTIMIZATION TECHNIQUES

1. EXPONENT COMPARE AND SIGNIFICAND ALIGNMENT

 It is necessary to determine the largest exponent and aligned significands to handle the three operands.

The traditional fused floating-point three-term adder determines the largest exponent based on the

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5274 www.ijariie.com 1666

exponent differences. Then, the exponent differences are used for the significand alignment. This

approach requires performing the exponent subtractions, complementation and significand shift

sequentially, which takes a large latency. In order to reduce the latency, a new exponent compare and

significand alignment logic is proposed. Six subtractions are performed to compute all the

combinations of exponent differences

 . In each pair of differences, an absolute value is selected based

on the exponent comparison result, which enables skipping the complementation after the subtractions.

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5274 www.ijariie.com 1667

Fig.1 An improved fused floating-point three-term adder

2. INVERT AND DUAL-REDUCTION
The sign logic generates the three effective sign bits () based on

the three sign bits and two op codes as

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5274 www.ijariie.com 1668

)

Where and are the first and second op codes, respectively. The aligned significands are

inverted based on the effective sign bits for the subtraction. The three operand subtraction requires that

up to two significands are complimented. If all three operands are negative, they are added and the sign

becomes negative, that is –A-B-C = -(A+B+C). In order to avoid the increments after the inverters, 2

bits are extended to the LSB of the significands that are propagated to the significand addition to

handle the cases that one or two significands are inverted by effectively adding 1 or 2, respectively.

3. EARLY NORMALIZATION
One of the design issues for the fused floating-point three term adder is the high precision significand

addition. The traditional fused floating-point three-term adder aligns the significands to 2f+6 bits,

where f is the number of significand bits. Such large significands require a large significand addition

and normalization, which the biggest bottleneck of the fused floating-point three-term adder. To reduce

the overhead, early normalization is applied. The normalization is performed prior to the significand

addition so that the significand adder size is reduced to f+1 bits. The rest of lower bits (f+7) are passed

to rounding. By normalizing the significand pair prior to the significand addition, the round position is

fixed so that the significand addition and rounding can be performed in parallel, which significantly

reduces the latency of the critical path.

4. THREE-INPUT LZA AND SIGNIFICAND COMPARISON

Since the normalization is performed prior to the significand addition, the LZA and normalization is on

the critical path. To use a traditional two-input LZA, the three significands need to be reduced to two

using a 3:2 CSA, which increases the delay. The three-input LZA encodes the three inputs at once to

skip the delay of the 3:2 CSA. The three-input LZA can be implemented by extending the traditional

two-input LZA. Like most of the LZAs, the three-input LZA consists of two parts: 1) Pre-encoding

indicator vectors and 2) Leading Zero Detection (LZD) logic for generating the leading zero count.

5. COMPOUND ADDITION AND ROUNDING
The normalized significand pair is passed to the significand addition and rounding. As described

above, the upper significand bits are used for the addition and the lower bits are used for the rounding.

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5274 www.ijariie.com 1669

In the two-term adder, only one significand is shifted for the alignment so that there is no carry

propagation for the lower part.

The compound addition determines the upper f bits including possible two overflow bits, and the

rounding determines the rest of three LSBs and the round decision. The upper f+1 bits are passed to the

compound addition, which produces sum and sum+1 simultaneously. Two significand sums are right

shifted by up to 2 bits based on the overflow bits. Then, one correct significand sum is selected based

on the round decision.

6. BRENT KUNG ADDER
The earlier fused floating point adders used Kogge-Stone adder. In this paper, the Kogge-Stone adder

is replaced with the Brent-Kung adder inorder to reduce the adder size Brent- Kung is a parallel prefix

form of the carry look ahead adder. It takes less area to implement than the other prefix adders such as

Kogge- Stone adder and it also has less wiring congestion. Instead of using a carry chain to calculate

the output, the method shown in Fig.2 is used.

Fig.2 4-bit Brent-Kung Adder

This will reduce the delay without compromising the power performance of the adder. Replacing the

Kogge-Stone adder with the above structure of Brent-Kung adder in the part of addition we can see

that there is significant reduction in area.

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5274 www.ijariie.com 1670

RESULTS AND COMPARISON

The proposed design is implemented for single precision in Verilog-HDL and synthesized with the

Nangate 45 nm CMOS technology standard cell library. In order to evaluate the improvement of the

proposed design, the area and delay are compared with the previous designs. Depending on the target

frequency, the implementations are synthesized with different area and delay. Table 1 compares the

logic utilization of Kogge-stone adder and Brent-kung adder. Even though the delay for both adder is

same, the area covered is smaller for Brent-kung adder. Thus the power consumption also become

lower. The proposed design has a smaller significand adder size compared to the traditional designs.

Table 6.1 Logic utilization comparison

Logic utilization Kogge-Stone adder Brent-Kung adder

Number of slice registers 59 59

Number of slice LUTs 1028 923

Number of fully used LUT-FF pairs 59 59

Number of bonded IOBs 1658 1658

Delay 14.387 ns 14.387

CONCLUSION

The improved architecture design and implementation for a fused floating-point three-term adder has

been presented. There are several critical design issues for the fused floating-point three-term adder: 1)

Complex exponent processing and significand alignment, 2) Complementation after the significand

addition, 3) Large precision significand adder, 4) Massive cancellation management, and 5) Complex

round processing. To resolve those issues, several algorithms and optimization techniques are applied.

For further improvement, Kogge-stone adder is replaced with Brent-kung adder which reduces the

area.

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5274 www.ijariie.com 1671

REFERENCES

[1] Jongwook Sohn, Earl E. Swartzlander Jr.,(2014) “A Fused Floating-Point Three-Term Adder”,

IEEE transactions on circuits and systems: regular papers, vol. 61, no. 10, october

[2] Pappu P. Potdukhe, Vishal D. Jaiswal(2015) “Review of carry select adder by using brent kung

adder” IJARECE Volume 4, Issue 10, October.

[3] J. Sohn and E. E. Swartzlander, Jr., (2013)“Improved architectures for a floating-point fused dot

product unit,” in Proc. 21st Symp. Computer Arithmetic, pp. 41–48

 [4] J. Sohn and E. E. Swartzlander, Jr.,(2012) “Improved architectures for a fused floating-point

add-subtract unit,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 10, pp. 2285–2291, Oct

[5] A. Tenca, (2009)“Multi-operand floating-point addition,” in Proc. 21st Symp. Computer

Arithmetic, pp. 161–168.

[6] H. H. Saleh and E. E. Swartzlander, Jr., (2008)“A floating-point fused addsubtract unit,” in

Proc. 51st IEEE Midwest Symp. Circuits Syst., pp. 519–522.

[7] H. H. Saleh and E. E. Swartzlander, Jr.,(2008) “A floating-point fused dotproduct unit,” in Proc.

IEEE Int. Conf. Computer Des., pp. 427–431.

[8] T. Lang and J.D. Bruguera,(2004) “Floating-point fused multiply-add with reduced latency,”

IEEE Trans. Computers, vol. 53, pp. 988–1003.

[9] P. M. Seidel and G. Even,(2004) “Delay-optimized implementation of IEEE floating-point

addition,” IEEE Trans. Computers, vol. 53, no. 2, pp. 97–113, Feb.

[10] S. F. Oberman, H. Al-Twaijry, and M. J. Flynn, (1997) “The SNAP project: Design of floating

point arithmetic units,” in Proc. 14th IEEE Symp.Computer Arithmetic, pp. 156–165.

[11] E. Hokenek, R. K. Montoye, and P. W. Cook,(1990) “Second-generation RISC floating point

with multiply-add fused,” IEEE J. Solid-State Circuits, vol. 25, pp. 1207–1213, X.

[12] R. K. Montoye, E. Hokenek, and S. L. Runyon, (1990) “Design of the IBM RISC system/6000

floating-point execution unit,” IBM J. Res. Develop., vol. 34, pp. 59–70.

[13] M. P. Farmwald,(1981) “On the Design of High Performance Digital Arithmetic Units,” Ph.D.

dissertation, Computer Science, Stanford University, Stanford, CA, USA.

