
Vol-8 Issue-4 2022 IJARIIE-ISSN(O)-2395-4396

20951 ijariie.com 2792

A BRIEF ANALYSIS ABOUT GRAPH THEORY
NAGENDRAPPA.G

ASSISTANT PROFESSOR

DEPARTMENT OF MATHEMATICS

GOVERNMENT FIRST GRADE COLLEGE KORATAGERE, TUMKUR DIST-572129

MAIL;anandsjm@gmail.com Mo-9448892801

ABSTRACT

In mathematics, graph theory is the study of graphs, which are mathematical structures used to model

pair wise relations between objects. A graph in this context is made up of vertices (also called nodes or points)

which are connected by edges So many things in the world would have never come into existence if there hadn’t

been a problem that needed solving. This truth applies to everything, but boy, is it obvious in the world of computer

science. So, which amazing abstraction shall we learn about next? Well, now that we’re experts in tree data

structures, it only seems right to understand where trees came from. Trees are actually a subset of something you

might have already heard about: graphs. But in order to truly know why we use graphs and what they are, we’ll

need to go deep down to the very roots of something that stems from discrete mathematics: graph theory. If this is

your very first foray into discrete math, fear not it’s mine, too! Let’s tackle it together and try not to lose our sanity

in the process. When we first started looking at non-linear structures, we learned about their most fundamental

characteristic: that their data doesn’t follow an order at least, not an obvious numerical one, like we see in arrays or

linked lists. Trees, as we learned, start with a root node, and might connect to other nodes, which means that could

contain subtrees within them. Trees are defined by a certain set of rules: one root node may or may not connect to

others, but ultimately, it all stems from one specific place. Some trees have even more specific rules, like binary

search trees, which can only ever have two links to two nodes at any given time.

KEYWORDS;- GRAPH, LOOSEY GOOSEY GRAPHS, SINGLETON GRAPH, UNDIRECTED GRAPH.

INTRODUCTION

In mathematics, graph theory is the study of graphs, which are mathematical structures used to model

pair wise relations between objects. A graph in this context is made up of vertices (also called nodes or points)

which are connected by edges

So many things in the world would have never come into existence if there hadn’t been a problem that

needed solving. This truth applies to everything, but boy, is it obvious in the world of computer science.

Someone needed a way of keeping track of the order of things, so they played around with and created

different data structures until they found the one that worked the best for the specific problem that they were trying

to solve. Someone else needed a good way of storing data, so they played around with different number systems

until they found one that worked best for the kind of information that they wanted to contain. People needed a good

way of labeling and processing tasks, so they found a way to build upon the tools they had and created a way to

juggle all the things that one single system needed to do, at any given time.

Of course, computer science isn’t the only field to innovate and build upon what came before it, but I do

think that it’s unique in one way: computer science’s innovations rely and build upon its own abstractions.

I’ve talked about abstractions a whole lot in this series, because ultimately, that’s what this series is about:

finding the joy in the abstractions that lie beneath the things that all of us use, every single day. And, for what it’s

worth, when I say “us”, I’m only partially talking about us as programmers, the producers of technology. I also

mean us as users, the consumers of technology.

So, which amazing abstraction shall we learn about next? Well, now that we’re experts in tree data

structures, it only seems right to understand where trees came from. Trees are actually a subset of something you

might have already heard about: graphs. But in order to truly know why we use graphs and what they are, we’ll

need to go deep down to the very roots of something that stems from discrete mathematics: graph theory.

If this is your very first foray into discrete math, fear not it’s mine, too! Let’s tackle it together and try not

to lose our sanity in the process.

Vol-8 Issue-4 2022 IJARIIE-ISSN(O)-2395-4396

20951 ijariie.com 2793

Loosey goosey graphs

When we first started looking at non-linear structures, we learned about their most fundamental

characteristic: that their data doesn’t follow an order at least, not an obvious numerical one, like we see in arrays or

linked lists. Trees, as we learned, start with a root node, and might connect to other nodes, which means that could

contain subtrees within them. Trees are defined by a certain set of rules: one root node may or may not connect to

others, but ultimately, it all stems from one specific place. Some trees have even more specific rules, like binary

search trees, which can only ever have two links to two nodes at any given time.

But what if we did something kind of crazy and just…threw these rules out the window? Well, as it turns

out, we totally can do that! It’s just that we wouldn’t be dealing with trees anymore we’d be dealing with something

called a graph.

Trees are nothing more than restricted types of graphs, just with many more rules to follow . A tree will

always be a graph, but not all graphs will be trees.

So, what is it that makes a tree different from the large umbrella of graphs?

Well, for one thing, a tree can only flow in one direction, from the root node to either leaf nodes or child

nodes. A tree can also only have one-way connections — a child node can only have one parent, and a tree can’t

have any loops, or cyclical links.

Tree data structures as compared to graph data structures

With graphs, all of these restrictions go straight out the window. Graphs don’t have any concept of a “root”

node. And why would they? Nodes can be connected in any way possible, really. One node might be connected to

five others! Graphs also don’t have any notion of “one-directional” flow instead, they might have direction, or they

might have no direction whatsoever. Or, to complicate matters further, they could have some links that have

direction and others that don’t! But we won’t get into that today.

Let’s stick with the simple stuff to start.

Graphs with direction, and graphs without

Okay, so we know that graphs pretty much break all the rules that we know. However, there is one

characteristic that every graph must have: every graph always needs to have, at the very least, one single node. Just

as how trees need at least one root node in order to be considered a “tree”, similarly, a graph needs at least a single

node in order to be considered a “graph”. A graph with just one node is usually referred to as a singleton graph,

although we won’t really be dealing with those.

Most of the graphs we’ll be dealing with are a bit more complex. But, don’t be worried we won’t be diving

into the super complicated graphs today. And trust me, some graphs really are complicated!

Instead, let’s look at the two types of graphs that are pretty easy to spot, and also pretty common in graph

theory problems: directed graphs, and undirected graphs.

As we know, there are no real rules in the way that one node is connected to another node in a graph. Edges

(sometimes referred to as links) can connect nodes in any way possible.

Vol-8 Issue-4 2022 IJARIIE-ISSN(O)-2395-4396

20951 ijariie.com 2794

Edges can connect nodes in any way possible!

The different types of edges are pretty important when it comes to recognizing and defining graphs. In fact,

that’s one of the biggest and most obvious differentiators between one graph and another: the types of edges that it

has. For the most part (aside from one exception, which we won’t cover today), graphs can have two types of edges:

a edge that has a direction or flow, and an edge that has no direction or flow. We refer to these as directed and

undirected edges, respectfully.

In a directed edge, two nodes are connected in a very specific way. In the example below, node A connects

to node B; there is only one way to travel between these two nodes — only one direction that we can go. It’s pretty

common to refer to the node that we’re starting from as the origin, and the node that we’re traveling to as the

destination. In a directed edge, we can only travel from the origin to the destination, and never the other way

around.

Directed edges compared to undirected edges

However, it’s an entirely different story with undirected edges. In an undirected edge, the path that we can

travel goes both ways. That is to say, the path between the two nodes is bidirectional, meaning that the origin and

destination nodes are not fixed.

This differentiation is actually pretty important, because the edges in a graph determine what the graph is

called. If all of the edges in a graph are directed, the graph is said to be a directed graph, also called digraph. If all

of the edges in a graph are undirected, the graph is said to be you guessed it an undirected graph! Go figure, right?

Vol-8 Issue-4 2022 IJARIIE-ISSN(O)-2395-4396

20951 ijariie.com 2795

Directed graphs as compared to undirected graphs

This is all very cool, but at this point, I want to know two things — where did all of this graph stuff come from,

exactly? And…why should we care?

Let’s investigate.

Tread lightly: we’re in graph country now

Computer science loves to borrow stuff. More specifically, it has borrowed a lot of concepts from logic and

mathematics. As it turns out, this is the case with graphs.

Graph data structures as we know them to be computer science actually come from math, and the study of

graphs, which is referred to as graph theory.

In mathematics, graphs are a way to formally represent a network, which is basically just a collection of

objects that are all interconnected.

As it turns out, when computer scientists applied graph theory to code (and ultimately implemented graphs

as data structures), they didn’t change a whole lot. So, a lot of the terms that we use to describe and implement

graphs are the exact terms that we’ll find in mathematical references to graph theory.

For example, in mathematical terms, we describe graphs as ordered pairs. Remember high school algebra,

when we learned about (x,y) ordered pair coordinates? Similar deal here, with one difference: instead of x and y, the

parts of a graph instead are: v, for vertices, and e, for its edges.

The formal, mathematical definition for a graph is just this: G = (V, E). That’s it! Really. I promise.

A very brief introduction to graph theory

But hang on a second — what if our graph has more than one node and more than one edge! In fact…it will pretty

much always have multiple edges if it has more than one node. How on earth does this definition work?

Well, it works because that ordered pair (V, E) is actually made up of two objects: a set of vertices, and a

set of edges.

Vol-8 Issue-4 2022 IJARIIE-ISSN(O)-2395-4396

20951 ijariie.com 2796

Okay, that makes more sense to me now. But it would be a whole lot clearer if I had an example and

actually wrote out the definition of a graph! So we’ll do just that. In the example below, we have an undirected

graph, with 8 vertices, and 11 edges.

Formally defining an undirected graph

So what’s going on here?

Well, we wrote out our ordered pair (V, E), but because each of those items is an object, we had to write

those out as well. We defined V as an unordered set of references to our 8 vertices. The “unordered” part is really

important here, because remember, unlike trees, there is no hierarchy of nodes! Which means that we don’t need to

order them, since order doesn’t matter here.

We also had to define E as an object, which contains a bunch of edge objects within it. Notice yet again that

our edge objects are also unordered. Why might that be? Well, what type of graph is this? Is there any direction or

flow? Is there a fixed sense of “origin” and “destination”?

Nope, there’s not! This is an undirected graph, which means that the edges are bidirectional and the origin

node and destination node are not fixed. So, each of our edge objects are also unordered pairs.

This particularity, of course, leads us to wonder: what if this were a directed graph? Time for another

example! Here’s a directed graph, with three vertices and three edges:

Vol-8 Issue-4 2022 IJARIIE-ISSN(O)-2395-4396

20951 ijariie.com 2797

Formally defining a directed graph

The way we define the vertices here doesn’t look any different, but let’s look more closely at our edge

definition. Our edge objects in this case are ordered pairs, because direction actually matters in this case! Since we

can only travel from the origin node to the destination node, our edges must be ordered, such that the origin node is

the first of the two nodes in each of our edge definitions.

Cool, so that’s how we define graphs. But…when would we ever actually use graphs? Well, you probably

used one today. You might just not know it yet! Time to change that.

Super social graphs

Graphs are all around us, we just don’t always see them for what they are.

In fact, by the very act of reading this post, you are literally on a graph right now. The web is a massive

graph structure! When we click between websites and navigate back and forth between URLs, we’re really just

navigating through a graph. Sometimes those graphs have nodes with edges that are undirected — I can go back and

forth from one webpage to another and others that are directed I can only go from webpage A to webpage B, and

never the other way around.

But there’s an even better example that beautifully illustrates our daily interactions with graphs: social networks.

Facebook, a massive social network, is a type of graph. And if we think more about it actually functions,

we start to better understand how we can define, and exactly what type of graph it is. On Facebook, if I add you as a

friend, you must accept my request. It’s not possible for me to be your friend on the network without you also being

mine. The relationship between two users (read: nodes or vertices in graph terms!) is bidirectional. There’s no

concept of an “origin” and a “destination” node instead, you’re my friend and I am yours.

Can you guess what type of graph Facebook is implemented as?

Vol-8 Issue-4 2022 IJARIIE-ISSN(O)-2395-4396

20951 ijariie.com 2798

Facebook as an undirected graph structure

If you guessed undirected graph, then you’re right! Well done. Relationships are two-way, so if we were to

define Facebook’s friend network as a graph, its edges would all end up being unordered pairs when we wrote them

out.

Twitter, on the other hand, works very differently from Facebook. I can follow you, but you might not

follow me back. Case in point: I follow Beyonce, but she definitely does not follow me back (sadly).

Twitter as a directed graph structure

We could represent Twitter as a directed graph. Each edge we create represents a one-way relationship.

When you follow me on Twitter, you create an edge in the graph with your account as the origin node, and my

account as the destination node.

So what happens when I follow you back? Do I change the edge you created when you followed me? Does

it suddenly become bidirectional? Well, no, because I could inflow you at any given point. When I follow you back

on Twitter, I create a second edge, with my account as the origin node and yours as the destination.

The same model applies to Medium, as well, which lets you follow and inflow authors! In fact, this

network model is all over the place. And all it is, once we abstract all the layers away, is a graph. And truly, what a

powerful thing it is.

References

Lots and lots of entire books have been written about graphs. I certainly didn’t cover enough information here to fill

a book, but that doesn’t mean you can’t keep learning about graphs! Fill your mind with more graph theory

awesomeness, starting with the great links below.

1. Difference between trees and graphs, Poonam Dhanvani

2. What’s the difference between the data structure tree and graph?, Stack Overflow

3. Applications of Graph Theory In Computer Science: An Overview, S.G.Shirinivas

4. Graph Traversal, Professor Jonathan Cohen

5. Data Structures: Introduction To Graphs, my code school

6. Websites

7. Social media

