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ABSTRACT 

 
In mathematics, graph theory is the study of graphs, which are mathematical structures used to model 

pair wise relations between objects. A graph in this context is made up of vertices (also called nodes or points) 

which are connected by edges So many things in the world would have never come into existence if there hadn’t 

been a problem that needed solving. This truth applies to everything, but boy, is it obvious in the world of computer 

science. So, which amazing abstraction shall we learn about next? Well, now that we’re experts in tree data 

structures, it only seems right to understand where trees came from. Trees are actually a subset of something you 

might have already heard about: graphs. But in order to truly know why we use graphs and what they are, we’ll 

need to go deep down to the very roots of something that stems from discrete mathematics: graph theory. If this is 

your very first foray into discrete math, fear not it’s mine, too! Let’s tackle it together and try not to lose our sanity 

in the process. When we first started looking at non-linear structures, we learned about their most fundamental 

characteristic: that their data doesn’t follow an order at least, not an obvious numerical one, like we see in arrays or 

linked lists. Trees, as we learned, start with a root node, and might connect to other nodes, which means that could 

contain subtrees within them. Trees are defined by a certain set of rules: one root node may or may not connect to 

others, but ultimately, it all stems from one specific place. Some trees have even more specific rules, like binary 

search trees, which can only ever have two links to two nodes at any given time. 
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INTRODUCTION 

In mathematics, graph theory is the study of graphs, which are mathematical structures used to model 

pair wise relations between objects. A graph in this context is made up of vertices (also called nodes or points) 

which are connected by edges 

So many things in the world would have never come into existence if there hadn’t been a problem that 

needed solving. This truth applies to everything, but boy, is it obvious in the world of computer science. 

Someone needed a way of keeping track of the order of things, so they played around with and created 

different data structures until they found the one that worked the best for the specific problem that they were trying 

to solve. Someone else needed a good way of storing data, so they played around with different number systems 

until they found one that worked best for the kind of information that they wanted to contain. People needed a good 

way of labeling and processing tasks, so they found a way to build upon the tools they had and created a way to 

juggle all the things that one single system needed to do, at any given time. 

Of course, computer science isn’t the only field to innovate and build upon what came before it, but I do 

think that it’s unique in one way: computer science’s innovations rely and build upon its own abstractions. 

I’ve talked about abstractions a whole lot in this series, because ultimately, that’s what this series is about: 

finding the joy in the abstractions that lie beneath the things that all of us use, every single day. And, for what it’s 

worth, when I say “us”, I’m only partially talking about us as programmers, the producers of technology. I also 

mean us as users, the consumers of technology. 

So, which amazing abstraction shall we learn about next? Well, now that we’re experts in tree data 

structures, it only seems right to understand where trees came from. Trees are actually a subset of something you 

might have already heard about: graphs. But in order to truly know why we use graphs and what they are, we’ll 

need to go deep down to the very roots of something that stems from discrete mathematics: graph theory. 

If this is your very first foray into discrete math, fear not it’s mine, too! Let’s tackle it together  and try not 

to lose our sanity in the process. 
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Loosey goosey graphs 

When we first started looking at non-linear structures, we learned about their most fundamental 

characteristic: that their data doesn’t follow an order at least, not an obvious numerical one, like we see in arrays or 

linked lists. Trees, as we learned, start with a root node, and might connect to other nodes, which means that could 

contain subtrees within them. Trees are defined by a certain set of rules: one root node may or may not connect to 

others, but ultimately, it all stems from one specific place. Some trees have even more specific rules, like binary 

search trees, which can only ever have two links to two nodes at any given time. 

But what if we did something kind of crazy and just…threw these rules out the window? Well, as it turns 

out, we totally can do that! It’s just that we wouldn’t be dealing with trees anymore  we’d be dealing with something 

called a graph. 

Trees are nothing more than restricted types of graphs, just with many more rules to follow . A tree will 

always be a graph, but not all graphs will be trees. 

So, what is it that makes a tree different from the large umbrella of graphs? 

Well, for one thing, a tree can only flow in one direction, from the root node to either leaf nodes or child 

nodes. A tree can also only have one-way connections — a child node can only have one parent, and a tree can’t 

have any loops, or cyclical links. 

                             
Tree data structures as compared to graph data structures 

With graphs, all of these restrictions go straight out the window. Graphs don’t have any concept of a “root” 

node. And why would they? Nodes can be connected in any way possible, really. One node might be connected to 

five others! Graphs also don’t have any notion of “one-directional” flow  instead, they might have direction, or they 

might have no direction whatsoever. Or, to complicate matters further, they could have some links that have 

direction and others that don’t! But we won’t get into that today. 

Let’s stick with the simple stuff to start. 

Graphs with direction, and graphs without 

Okay, so we know that graphs pretty much break all the rules that we know. However, there is one 

characteristic that every graph must have: every graph always needs to have, at the very least, one single node. Just 

as how trees need at least one root node in order to be considered a “tree”, similarly, a graph needs at least a single 

node in order to be considered a “graph”. A graph with just one node is usually referred to as a singleton graph, 

although we won’t really be dealing with those. 

Most of the graphs we’ll be dealing with are a bit more complex. But, don’t be worried  we won’t be diving 

into the super complicated graphs today. And trust me, some graphs really are complicated! 

Instead, let’s look at the two types of graphs that are pretty easy to spot, and also pretty common in graph 

theory problems: directed graphs, and undirected graphs. 

As we know, there are no real rules in the way that one node is connected to another node in a graph. Edges 

(sometimes referred to as links) can connect nodes in any way possible. 
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Edges can connect nodes in any way possible! 

The different types of edges are pretty important when it comes to recognizing and defining graphs. In fact, 

that’s one of the biggest and most obvious differentiators between one graph and another: the types of edges that it 

has. For the most part (aside from one exception, which we won’t cover today), graphs can have two types of edges: 

a edge that has a direction or flow, and an edge that has no direction or flow. We refer to these as directed and 

undirected edges, respectfully. 

In a directed edge, two nodes are connected in a very specific way. In the example below, node A connects 

to node B; there is only one way to travel between these two nodes — only one direction that we can go. It’s pretty 

common to refer to the node that we’re starting from as the origin, and the node that we’re traveling to as the 

destination. In a directed edge, we can only travel from the origin to the destination, and never the other way 

around. 

           
Directed edges compared to undirected edges 

However, it’s an entirely different story with undirected edges. In an undirected edge, the path that we can 

travel goes both ways. That is to say, the path between the two nodes is bidirectional, meaning that the origin and 

destination nodes are not fixed. 

This differentiation is actually pretty important, because the edges in a graph determine what the graph is 

called. If all of the edges in a graph are directed, the graph is said to be a directed graph, also called digraph. If all 

of the edges in a graph are undirected, the graph is said to be you guessed it  an undirected graph! Go figure, right? 
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Directed graphs as compared to undirected graphs 

This is all very cool, but at this point, I want to know two things — where did all of this graph stuff come from, 

exactly? And…why should we care? 

Let’s investigate. 

Tread lightly: we’re in graph country now 

Computer science loves to borrow stuff. More specifically, it has borrowed a lot of concepts from logic and 

mathematics. As it turns out, this is the case with graphs. 

Graph data structures as we know them to be computer science actually come from math, and the study of 

graphs, which is referred to as graph theory. 

In mathematics, graphs are a way to formally represent a network, which is basically just a collection of 

objects that are all interconnected. 

As it turns out, when computer scientists applied graph theory to code (and ultimately implemented graphs 

as data structures), they didn’t change a whole lot. So, a lot of the terms that we use to describe and implement 

graphs are the exact terms that we’ll find in mathematical references to graph theory. 

For example, in mathematical terms, we describe graphs as ordered pairs. Remember high school algebra, 

when we learned about (x,y) ordered pair coordinates? Similar deal here, with one difference: instead of x and y, the 

parts of a graph instead are: v, for vertices, and e, for its edges. 

The formal, mathematical definition for a graph is just this: G = (V, E). That’s it! Really. I promise. 

     
A very brief introduction to graph theory 

But hang on a second — what if our graph has more than one node and more than one edge! In fact…it will pretty 

much always have multiple edges if it has more than one node. How on earth does this definition work? 

Well, it works because that ordered pair (V, E)  is actually made up of two objects: a set of vertices, and a 

set of edges. 
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Okay, that makes more sense to me now. But it would be a whole lot clearer if I had an example and 

actually wrote out the definition of a graph! So we’ll do just that. In the example below, we have an undirected 

graph, with 8 vertices, and 11 edges. 

                       
Formally defining an undirected graph 

So what’s going on here? 

Well, we wrote out our ordered pair (V, E), but because each of those items is an object, we had to write 

those out as well. We defined V as an unordered set of references to our 8 vertices. The “unordered” part is really 

important here, because remember, unlike trees, there is no hierarchy of nodes! Which means that we don’t need to 

order them, since order doesn’t matter here. 

We also had to define E as an object, which contains a bunch of edge objects within it. Notice yet again that 

our edge objects are also unordered. Why might that be? Well, what type of graph is this? Is there any direction or 

flow? Is there a fixed sense of “origin” and “destination”? 

Nope, there’s not! This is an undirected graph, which means that the edges are bidirectional and the origin 

node and destination node are not fixed. So, each of our edge objects are also unordered pairs. 

This particularity, of course, leads us to wonder: what if this were a directed graph? Time for another 

example! Here’s a directed graph, with three vertices and three edges: 



Vol-8 Issue-4 2022                IJARIIE-ISSN(O)-2395-4396 
    

20951  ijariie.com 2797 

                           
Formally defining a directed graph 

The way we define the vertices here doesn’t look any different, but let’s look more closely at our edge 

definition. Our edge objects in this case are ordered pairs, because direction actually matters in this case! Since we 

can only travel from the origin node to the destination node, our edges must be ordered, such that the origin node is 

the first of the two nodes in each of our edge definitions. 

Cool, so that’s how we define graphs. But…when would we ever actually use graphs? Well, you probably 

used one today. You might just not know it yet! Time to change that. 

Super social graphs 

Graphs are all around us, we just don’t always see them for what they are. 

In fact, by the very act of reading this post, you are literally on a graph right now. The web is a massive 

graph structure! When we click between websites and navigate back and forth between URLs, we’re really just 

navigating through a graph. Sometimes those graphs have nodes with edges that are undirected — I can go back and 

forth from one webpage to another and others that are directed  I can only go from webpage A to webpage B, and 

never the other way around. 

But there’s an even better example that beautifully illustrates our daily interactions with graphs: social networks. 

Facebook, a massive social network, is a type of graph. And if we think more about it actually functions, 

we start to better understand how we can define, and exactly what type of graph it is. On Facebook, if I add you as a 

friend, you must accept my request. It’s not possible for me to be your friend on the network without you also being 

mine. The relationship between two users (read: nodes or vertices in graph terms!) is bidirectional. There’s no 

concept of an “origin” and a “destination” node  instead, you’re my friend and I am yours. 

Can you guess what type of graph Facebook is implemented as? 
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Facebook as an undirected graph structure 

If you guessed undirected graph, then you’re right! Well done. Relationships are two-way, so if we were to 

define Facebook’s friend network as a graph, its edges would all end up being unordered pairs when we wrote them 

out. 

Twitter, on the other hand, works very differently from Facebook. I can follow you, but you might not 

follow me back. Case in point: I follow Beyonce, but she definitely does not follow me back (sadly). 

             
Twitter as a directed graph structure 

We could represent Twitter as a directed graph. Each edge we create represents a one-way relationship. 

When you follow me on Twitter, you create an edge in the graph with your account as the origin node, and my 

account as the destination node. 

So what happens when I follow you back? Do I change the edge you created when you followed me? Does 

it suddenly become bidirectional? Well, no, because I could inflow you at any given point. When I follow you back 

on Twitter, I create a second edge, with my account as the origin node and yours as the destination. 

The same model applies to Medium, as well, which lets you follow and inflow authors! In fact, this 

network model is all over the place. And all it is, once we abstract all the layers away, is a graph. And truly, what a 

powerful thing it is. 
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