
Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5001 www.ijariie.com 797

A Research on Efficient Secure Coding

Method for Preventing Web Applications

from Different Types of Attacks

Kunal D. Garud
 1

, Krunal J. Panchal
 2

1
 Student, Computer Engineering, LJ Institute of Engineering & Technology, Gujarat, India
2
 Prof., Computer Engineering, LJ Institute of Engineering & Technology, Gujarat, India

ABSTRACT

Web applications provide vast category of functionalities and usefulness. As more and more sensitive data is

available over the internet hackers are becoming more interested in such data revealing which can cause massive

damage. SQL injection is one of such attacks. This attack can be used to infiltrate the database of any web

application that may lead to alteration of database or disclosing important information. Cross site scripting is one

more attack in which attacker obfuscates the input given to the web application that may lead to changes in view of

the web page. So, proposed model in this literature can be very useful to prevent web application from this type

attacks. where opinions are highly unstructured.

Keyword - Web Application Security, Cross Site Scripting (XSS), SQL Injection, Path Traversal, Remote File

Inclusion, OS command Injection, Web Application Vulnerability, OWASP Top 10, Secure Coding

1. INTRODUCTION

1) Cross-Site Scripting (also known as XSS) is one of the most common application-layer web attacks. XSS

vulnerabilities target scripts embedded in a page that are executed on the client-side (in the user’s web browser)

rather than on the server-side. XSS in itself is a threat that is brought about by the internet security weaknesses of

client-side scripting languages, such as HTML and JavaScript. The concept of XSS is to manipulate client-side

scripts of a web application to execute in the manner desired by the malicious user. Such a manipulation can embed

a script in a page that can be executed every time the page is loaded, or whenever an associated event is performed.

XSS is the most common security vulnerability in software today. This should not be the case as XSS is easy to find

and easy to fix. XSS vulnerabilities can have consequences such as tampering and sensitive data theft.

Key Concepts of XSS

1. XSS is a web-based attack performed on vulnerable web applications.

2. In XSS attacks, the victim is the user and not the application.

3. In XSS attacks, malicious content is delivered to users using JavaScript.

Explaining Cross-Site Scripting

An XSS vulnerability arises when web applications take data from users and dynamically include it in web pages

without first properly validating the data. XSS vulnerabilities allow an attacker to execute arbitrary commands and

display arbitrary content in a victim user's browser. A successful XSS attack leads to an attacker controlling the

victim’s browser or account on the vulnerable web application. Although XSS is enabled by vulnerable pages in a

web application, the victims of an XSS attack are the application's users, not the application itself. The potency of an

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5001 www.ijariie.com 798

XSS vulnerability lies in the fact that the malicious code executes in the context of the victim's session, allowing the

attacker to bypass normal security restrictions.

Reflective XSS

There are many ways in which an attacker can entice a victim into initiating a reflective XSS request. For example,

the attacker could send the victim a misleading email with a link containing malicious JavaScript. If the victim

clicks on the link, the HTTP request is initiated from the victim's browser and sent to the vulnerable web

application. The malicious JavaScript is then reflected back to the victim's browser, where it is executed in the

context of the victim user's session.

Persistent XSS

Consider a web application that allows users to enter a username that is displayed on each user’s profile page. The

application stores each username in a local database. A malicious user notices that the web application fails to

sanitize the username field and inputs malicious JavaScript code as part of their username. When other users view

the attacker’s profile page, the malicious code automatically executes in the context of their session.

2) SQL injection (SQLi)

SQL injection (SQLi) is an application security weakness that allows attackers to control an application’s database –

letting them access or delete data, change an application’s data-driven behaviour, and do other undesirable things –

by tricking the application into sending unexpected SQL commands.

SQL injection weaknesses occur when an application uses untrusted data, such as data entered into web form fields,

as part of a database query. When an application fails to properly sanitize this untrusted data before adding it to a

SQL query, an attacker can include their own SQL commands which the database will execute. Such SQLi

vulnerabilities are easy to prevent, yet SQLi remains a leading web application risk, and many organizations remain

vulnerable to potentially damaging data breaches resulting from SQL injection.

How Attackers Exploit SQLi Vulnerabilities:

Attackers provide specially-crafted input to trick an application into modifying the SQL queries that the application

asks the database to execute. This allows the attacker to:

1. Control application behaviour that’s based on data in the database, for example by tricking an application

into allowing a login without a valid password

2. Alter data in the database without authorization, for example by creating fraudulent records, adding users or

“promoting” users to higher access levels, or deleting data

3. Access data without authorization, for example by tricking the database into providing too many results for

a query

Anatomy of a SQL Injection Attack

A developer defines a SQL query to perform some database action necessary for their application to function. This

query has an argument so that only desired records are returned, and the value for that argument can be provided by

a user (for example, through a form field, URL parameter, web cookie, etc.).

A SQLi attack plays out in two stages:

1. Research: Attacker tries submitting various unexpected values for the argument, observes how the

application responds, and determines an attack to attempt.

2. Attack: Attacker provides a carefully-crafted input value that, when used as an argument to a SQL query,

will be interpreted as part of a SQL command rather than merely data; the database then executes the SQL command

as modified by the attacker.

3) Remote File Inclusion:

Remote File Include (RFI) is an attack technique used to exploit "dynamic file include" mechanisms in web

applications. When web applications take user input (URL, parameter value, etc.) and pass them into file include

commands, the web application might be tricked into including remote files with malicious code.

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5001 www.ijariie.com 799

An attacker can use RFI for:-

Running malicious code on the server: Any code in the included malicious files will be run by the server. If the file

include is not executed using some wrapper, code in include files is executed in the context of the server user. This

could lead to a complete system compromise.

Running malicious code on clients: The attacker's malicious code can manipulate the content of the response sent to

the client. The attacker can embed malicious code in the response that will be run by the client (for example,

JavaScript to steal the client session cookies).

4) Directory Traversal:-

A directory traversal (or path traversal) consists in exploiting insufficient security validation / sanitization of user-

supplied input file names, so that characters representing "traverse to parent directory" are passed through to the file

APIs.

The goal of this attack is to use an affected application to gain unauthorized access to the file system. This attack

exploits a lack of security (the software is acting exactly as it is supposed to) as opposed to exploiting a bug in the

code

In web applications with dynamic pages, input is usually received from browsers through GET or POST request

methods. Here is an example of an HTTP GET request URL

GET http://test.webarticles.com/show.asp?view=oldarchive.html HTTP/1.1

Host: test.webarticles.com

The attacker would assume that show.asp can retrieve files from the file system and sends the following custom

URL.

GET http://test.webarticles.com/show.asp?view=../../../../../Windows/system.ini HTTP/1.1

Host: test.webarticles.com

This will cause the dynamic page to retrieve the file system.ini from the file system and display it to the user. The

expression.../ instructs the system to go one directory up which is commonly used as an operating system directive.

The attacker has to guess how many directories he has to go up to find the Windows folder on the system, but this is

easily done by trial and error

5) Command Injection:-

An Operating System (OS) command injection attack occurs when an attacker attempts to execute system level

commands through a vulnerable web application. Applications are considered vulnerable to the OS command

injections if they can be manipulated into executing unauthorized system commands via the web interface

If the weakness occurs in a high privileged program, it may allow an attacker to specify commands that would not

be available otherwise, or call alternate commands with privileges that the attacker does not have.The danger of this

weakness is aggravated if the breached process does not follow the principle of the least privilege because the

malicious command may gain system privileges and allow the attacker to cause additional damage.

2. RELATED WORK

[1] Predicting Cross-Site Scripting (XSS) Security Vulnerabilities in Web Applications

 In this paper proposed system is based on machine learning algorithms so it is efficient but it is

difficult to implement and execute this type of algorithms.

[2] Removing Cross-Site Scripting Vulnerabilities from Web Applications using the OWASP ESAPI Security

Guidelines

In this paper XSS prevention rules according to OWASP are suggested. This rules are very useful for preventing

web applications. But it is required to implement methodology which can utilize this rules for preventing web

applications from XSS.

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5001 www.ijariie.com 800

 [3] Research of SQL Injection Attack and Prevention Technology.

In this paper they have proposed SQL Defense model using which we can prevent web application from

SQL Injection.

 The SQL Defense model is efficient for discarding malicious input. But it can not be applied to web

applications dynamically in live environment.

[4] SQL Injection Attack Prevention Based on Decision Tree Classification

 In this paper they have proposed a SQL engine which is defending SQL Injection using Decision tree. But this

model increases processing overhead of web application for request-response architecture.

 [5] A Sound Framework for Dynamic Prevention of Local File Inclusion

This framework ensures Directory Traversal resistance when applied before the web deployment in a web server i.e.

when there is no additional script in web application folders and subfolders.

[6] Commix: Detecting and Blocking command injection flaws

In this paper they have proposed a commix: Software Architecture which will generate attack vectors of OS

Command injection and this attacks will be detected by Vulnerability detection module and blocks the attack to

execute any command on server

[7] A Novel Approach for Detection of SQL Injection and Cross Site Scripting Attacks

Whenever user will make a web request instead of directly generating a SQL query for directly we are processing

this request for any kind of SQL injection attacks or XSS attacks based on input parameters. This model implements

a strong input distillation. Input checking is a very critical in case of XSS attacks. Before passing the XSS infected

web request directly to the database where it can get permanently stored on data logic of web application, this model

tries to inform the admin of possible XSS or SQL injection attacks.

3. COMPARATIVE ANALYSIS

Sr.

No.

Paper Title Published Year Method Disadvantage

1 Predicting Cross-Site Scripting (XSS)

Security Vulnerabilities in Web

Applications

IEEE

2015

Machine learning

classifier

Difficult to implement

algorithms

2 Removing Cross-Site Scripting

Vulnerabilities from Web

Applications using the OWASP

ESAPI Security Guidelines

INDJST 2015 Rules based approach Could not applied to web

application dynamically

3 Research of SQL Injection Attack and

Prevention Technology

ICEDIF 2015 SQL defense

model

Low performance

4 SQL Injection Attack Prevention

Based on Decision Tree Classification

IEEE

2014

Three tier architecture

using Decision trees

Difficult to implement query

engine

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5001 www.ijariie.com 801

5 A Novel Approach for Detection of

SQL Injection and Cross Site

Scripting Attacks

IEEE

2015

Dynamic input

processing

Need to improve for

detection and prevention.

6 A Sound Framework for Dynamic

Prevention ofLocal File Inclusion

IEEE

2015

AntiLFIer Language Specific

7 Commix: Detecting and Blocking

command injection flaws

UPRC

2015

Commix Architecture Difficult to use.

4. PROBLEM STATEMENT

The fundamental security problem with web applications is that all user inputs are untrusted this gives rise to

number of security breaches. A huge variety of attacks against web applications involve submitting unexpected

input, crafted to cause behaviour that was not intended by the application’s designers. Input-based vulnerabilities

can arise anywhere within an application’s functionality,

and in relation to practically every type of technology in common use. So, It is required to prevent web applications

from this type of malicious inputs.

5. PROPOSED MODEL

Figure 1. Proposed Flow Model.

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5001 www.ijariie.com 802

6. ANALYSIS

There are four possible test outcomes in the Benchmark:

 Correctly identifies a real vulnerability (True Positive - TP)

 Fails to identify a real vulnerability (False Negative - FN)

 Correctly ignores a false alarm (True Negative - TN)

 Fails to ignore a false alarm (False Positive - FP)

Fig 2 Accuracy Scorecard

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5001 www.ijariie.com 803

Key:

True Positive (TP) Tests with real vulnerabilities that were correctly

reported as vulnerable.

False Negative (FN) Tests with real vulnerabilities that were not correctly

reported as vulnerable.

True Negative (TN) Tests with fake vulnerabilities that were correctly not

reported as vulnerable.

False Positive (FP) Tests with fake vulnerabilities that were incorrectly

reported as vulnerable.

True Positive Rate (TPR) = TP / (TP + FN) The rate at which the correctly reports real

vulnerabilities.

False Positive Rate (FPR) = FP / (FP + TN) The rate at which the system incorrectly reports fake

vulnerabilities as real.

Score = TPR - FPR Normalized distance from the random guess line.

7. CONCLUSIONS

Web application Security starts with the Architecture and Design. Security can’t be added on later without re-

designing and rewriting. Custom code often introduces vulnerabilities. Web application vulnerabilities are not

prevented by traditional security controls. So, making a secure code solution which can be applicable to every web

application will be very essential.

8. REFERENCES

[1] Mukesh Kumar Gupta, Mahesh Chandra Govil, Girdhari Singh (2015), "Predicting Cross-Site Scripting (XSS)

Security Vulnerabilities in Web Applications" , 2015 IEEE, 12
th

 International Joint Conference on Computer

Science and Software Engineering (JCSSE), Pages: 162 - 167, DOI: 10.1109/JCSSE.2015.7219789

[2] Isatou Hydara, Abu Bakar Md Sultan, Hazura Zulzalil, Novia Admodisastro, "Removing Cross-Site Scripting

Vulnerabilities from Web Applications using the OWASP ESAPI Security Guidelines", 2015 IJST, Indian

Journal of Science and Technology, Volume: 8, Issue: 30, DOI: 10.17485/ijst/2015/v8i30/87182.

[3] Li Qian, Zhenyuan Zhu, lun Hu, Shuying Liu, "Research of SQL Injection Attack and Prevention

Technology", 2015 IEEE, International Conference on Estimation, Detection and Information Fusion (ICEDIF

2015), Pages: 303 - 306, DOI: 10.1109/ICEDIF.2015.7280212

[4] B.Hanmanthu, B.Raghu Ram, Dr.P.Niranjan(2015), "SQL Injection Attack Prevention Based on Decision

Tree Classification", 2015 IEEE, 9th International Conference on Intelligent Systems and Control (ISCO), Pages: 1

- 5, DOI: 10.1109/ISCO.2015.7282227

[5] Piyush A. Sonewar, Nalini A. Mhetre. “A Novel Approach for Detection of SQL Injection and Cross Site

Scripting Attacks”, IEEE 2015, International Conference on Pervasive Computing (ICPC), Pages: 1 - 5, DOI:

10.1109/PERVASIVE.2015.7087131

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5001 www.ijariie.com 804

[6] Mir Saman Tajbakhsh, lamshid Bagherzadeh. “A Sound Framework for Dynamic Prevention of Local File

Inclusion”, IEEE 2015, International Conference on Information and knowledge technology,Pages:1-6, DOI:

978·14673·7485·9/15

[7] Anastasios Stasinopoulos, Christoforos Ntantogian, Christos Xenakis. “Commix: Detecting and Blocking

command injection flaws.”, DDSUP 2015,Pages:1-9.

[8] https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project, Accessed on: 25/8/2016, 5:45 PM

[9] http://www.veracode.com/security/web-application-vulnerabilities Accessed on: 25/8/2016, 6:30 PM

[10] http://www.informit.com/articles/article.aspx?p=694855&seqNum=2 Accessed on: 25/1/2017, 03:00 PM

