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Abstract: The generation of energy from renewable sources is subjected to very dynamic changes in 

environmental parameters and asset operating conditions. This is a very relevant issue to be 

considered when developing reliability studies, modeling asset degradation and projecting 

renewable energy production. To that end, Artificial Neural Network (ANN) models have proven 

to be a very interesting tool, and there are many relevant and interesting contributions using ANN 

models, with different purposes, but somehow related to real-time estimation of asset reliability and 

energy generation. This document provides a precise review of the literature related to the use of 

ANN when predicting behaviors in energy production for the referred renewable energy sources. 

Special attention is paid to describe the scope of the different case studies, the specific approaches 

that were used over time, and the main variables that were considered. Among all contributions, 

this paper highlights those incorporating intelligence to anticipate reliability problems and to 

develop ad-hoc advanced maintenance policies. The purpose is to offer the readers an overall 

picture per energy source, estimating the significance that this tool has achieved over the last years, 

and identifying the potential of these techniques for future dependability analysis. 

 
Keywords: renewable energy; artificial neural network; artificial intelligence; survey 

 
 
 
 

1. Introduction 

Solar PV, hydraulic and wind energy sources are supporting continuity of energy supply, which 

is a key strategic issue for many countries to guarantee their industry growth. They contribute to the 

use of inexhaustible energy sources, to the implementation of energy multi-sourcing strategies, to a 

more environmental friendly production of energy, and/or to the preservation of power generation, 

and distribution means integrity, ensuring dependability of the entire system [1–3]. However, the 

integration of these renewable energy plants into the conventional electrical grid has many 

challenges. Some of these challenges are related to reliability of the generation systems being used, 

but others have to do with the fact that these sources of energy are intermittent in nature, and they 

depend on the climatic conditions, affecting the stability of the network. Matching the supply and the 

load becomes troublesome and is a clear disturbance of the network. The stability of the network is 

based on maintaining grid frequency. A load greater than supply makes the frequency fall and a load 
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lesser than supply makes the frequency increase. In this context, relevant research activities are taking 

place to develop more accurate models for renewable energy supply prediction [4]. 

In spite of the existence of well-developed underlying physical models for each component of 

all kinds of renewal energy generation systems, complexity arising from the combination of these 

elements makes impractical the direct characterization of the system through closed mathematical 

expressions, so stochastic models are selected in practice to characterize the behavior of this sort of 

system. 

To gain prediction accuracy, intelligence and flexibility need to be incorporated into prediction 

models, and that is why the application of Artificial Intelligence (AI)—Machine Learning (ML) 

techniques is increasing in this field. AI-ML techniques consist of fitting the parameters of a model 

from observed data (experience) and are best suitable to discover behavioral patterns from data series 

in the presence of randomness. This property of machine learning algorithms is invaluable in 

anomaly detection problems [5]. 

Within AI-ML techniques, Artificial Neural Network (ANN) models have delivered good results 

for real-time estimations, and especially when learning from dynamic changes in environmental 

conditions becomes a key factor to improve prediction accuracy [6]. 

This paper reviews the different uses of ANN models for better renewable energy prediction. 

The idea is, at the same time, to identify those contributions with special emphasis on understanding 

assets’ reliability issues. The rationale for this is that ANN tools may also become an excellent tool 

for asset performance monitoring, also a complex problem in these environments where: 

 The assets can perform in very diverse operating conditions (due to diverse environmental 

conditions); 

 Asset conditions are many times not feasible to be monitored, or simply doing it becomes a 

complex technical problem with a very troublesome and economically non-viable solution 

(difficulty is many times related to specific functional locations); 

 Altogether, this could result in a serious lack of asset performance control and subsequent loss 

of expected performance efficiency. 

Therefore, the paper explores the efforts made for ANN models to become a practical asset 

performance monitoring tool, for any potential asset location, environment (the reader may also 

notice that this review also remarks on contributions incorporating meteorological forecasting) and 

operating conditions, offering the possibility to control asset performance and reliability, ensuring 

life cycle expectations according to existing business plans. 

In the review accomplished in this paper, it has also been recorded those occasions in which 

research was conducted for technique comparison purposes (considering other prediction 

techniques) or with the intention to identify possibilities of different prediction techniques 

complementarity. Finally, special attention is also paid to those parameters that were considered for 

prediction in the different ANN models reviewed. This can also provide relevant information to 

many researchers and practitioners in the field. 

The paper is organized as follows: Section 2 provides a background of the ANN models, where 

we do not extend their mathematical formulation but we concentrate on their fundamental 

capabilities. Section 3 reviews the literature containing ANN prediction models for renewal energy. 

In this Section, we first classify the models by their specific use and then we concentrate on their 

features by energy source studied. Section 4 organizes and compares results obtained for the different 

energy source prediction models, while in Section 5 we concentrate on results for one of the main 

concerns of this paper, the models that we name ARAM (Asset reliability assessments models). 

Finally, we present conclusions and the list of references in the last two Sections. 
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2. Artificial Neural Network Models Background, and Fundamental Capabilities 

Seminal works in this ANN area were developed by Warren MacCulloch and Walter Pitss (1943) 

[7]; since then, the interest in ANN properties increased intensively, and after the publication of the 

John Hopfield’s book (1985) [8] and the development of backpropagation ANN models by David 

Rumelhart and G. Hinton in 1986 [9], the interest was more focused on particular applications in 

industry (see Table 1). 

 
Table 1. Catalogue of initial Artificial Neural Network (ANN) contributions. 

 

ANN Model Creator Year Utilization Reference 

Perceptron Networks Rosenblatt 1958 Prediction [10] 

Adaline y Madaline Bernard Widrow 1960 Prediction [11] 

Spatio-Temporal-Pattern Recognition (SPR) Grossberg 1960–1970 Association [12] 

Adaptative Resonance Theory Networks (ART) Carpenter, Grossberg 1960–1986 Conceptualization [13] 

Directed Random Search (DRS) Networks Maytas y Solis 1965–1981 Classification [14] 

Brain State in a Box James Anderson 1970–1986 Association [15] 

Self-organizing Maps (SOM) Kohonen 1979–1982 Conceptualization [16] 

Hopfield Networks Hopfield 1982 Optimization [17] 

Back-Propagation Rumelhart y Parker 1985 Prediction [18] 

The Boltzmann Machine Ackley, Hinton y Sejnowski 1985 Association [19] 

Bi-Directional Associative Memory (BAM) Networks Bart Kosko 1987 Association [20] 

Counter-Propagation Hecht-Nielsen 1987 Association [21] 

Hamming Networks Lippman 1987 Association [22] 

Delta Bar Delta (DBD) Networks Jacob 1988 Classification [23] 

Learning Vector Quantization (LVQ) Networks Kohonen 1988 Classification [24] 

Probabilistic Neural Network (PNN) Specht 1988 Association [25] 

Recirculation Networks Hinton y McClelland 1988 Filtering [26] 

Functional-link Networks (FLN) Pao 1989 Classification [27] 

Cascade-Correlation Networks Fahhman y Lebiere 1990 Association [28] 

Digital Neural Networks Architecture (DNNA) Neural Semiconductor Inc. 1990 Prediction [29] 

 
Following those initial works related to ANN models, different contributions were published 

for different purposes. The following references can be considered a good sample of works that can 

be found in the literature up to 1990, cataloged in Table 1, according to the reason for their utilization: 

association, classification, conceptualization, prediction, optimization, and filtering. 

 Association: Technique to reduce data dimensionality. 

 Classification: Technique for grouping data into classes. 

 Conceptualization: Technique for conceptualizing ideas based on concrete data. 

 Prediction: Technique to find values that are going to happen. 

 Optimization: Technique to seek convergence to a minimum. 

 Filtering: Technique for sifting data according to restrictions. 

ANN models allow us to obtain updated assets’ condition analysis, and according to the status 

of the environment variables, they are able to predict production, adding capabilities to foresee 

existing and potential problems (fault, failure, production losses, etc.) based on collected information 

from sensors in each particular asset (with an approach very similar to current studies on the Internet 

of Things—IoT) [30–32]. ANN models are mathematical tools emulating human reasoning, learning 

from past experiences and coping with rather complex non-linear behaviors [33]. These models are 

especially well suited to replicate certain behavioral patterns where relationship among input and 

output variables cannot be explained by other mathematical techniques [34,35]. 

Therefore, we can conclude that ANN models have as their main advantages the capacity to find 

complex relations among variables, with a high tolerance to data uncertainty (thanks to redundancy 

in data storage), and providing predicted variable patterns in-real time [35–37]. Also, we can say that 

ANN models have as their main disadvantages the need for abundant information, with enough data 

quality, which is not always accessible or available at a reasonable cost [38]. 

ANNs are built with the mission of processing the information of inputs and transferring that 

information through different connections where it is activated by a transference function, which is 

tuned up using a training process that can be developed when reasonable real data are provided [39]. 

In this process, ANNs are usually trained with 75% of available data (training set) and with the 
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remaining data, 25%, the network is validated (test set) [39,40]. There are different proposed 

architectures in the literature for ANNs (feed-forward, sequential, convolutional, …), but in its 

simplest form, a feed-forward neural network, also known as a perceptron, consists of several 

interconnected layers of processing units called neurons [34,41] as shown in Figure 1. The first layer, 

called the input layer, is composed of P neurons, arranged as a P-dimensional vector; the intermediate 

layer, called the hidden layer, is composed of M neurons, arranged as a M-dimensional vector; and 

the output layer has one neuron, Y. 

 

 
Figure 1. ANN structure. 

 
The output of a neuron (i) of the input layer is equal to  Xi, whereas the components of the output 

of  the  hidden  layer,  ZM  (Equation  (1))  are  equal  to  a  function  called  the  activation  function, 

resembling the mechanism of a physiological neuron, of the linear combination of the input neurons 

Xi, adjusted by a threshold  α
M

. Most usual activation functions are the sigmoid and the hyperbolic 

tangent. 

 

The output of the neural network, Y in Equation (2), is a function (usually the identity in most 

common regression problems) of the linear combination of the output of the hidden layer neurons, 

adjusted by another threshold β0, and considering Z0 = 1. 

 

 
 

All the aforementioned parameters of the model (weights of linear combinations and thresholds) 

are calculated through the application of a learning algorithm using observed data (experience). The 

objective of the learning process is to find the parameter set that minimizes the so-called loss function 

over the training data set, whereas the validation set is used to find the hyperparameters of the 

learning algorithm by minimizing the loss function over the validation data set. On the other hand, 

the test data set is employed to evaluate the accuracy of the model. Furthermore, it is common to 

apply a k-fold cross-validation process to iteratively apply the algorithm to k different partition sets. 
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Back-propagation with gradient descent is the most usual algorithm used to train the  neural 

network when the activation functions are differentiable. Lapedes and Farber (1987) [42] have 

demonstrated that a type of ANN model, the Backpropagation Neural Network, exceeds in an order       

of magnitude the results of conventional linear and polynomial methods.  The  Backpropagation 

Network is a very popular learning mechanism for prediction problems solving in multiple-layer 

perceptron networks [9,43]. The selected  loss function is usually the  sum  of squared  errors, R, over  

the elements of the training set, T =  {(X
(i)

, Y
(i)

)|i € {1, … , N}}. 

The backpropagation algorithm consists of a loop with a maximum of S steps where forward 

and backwards actions are taken, and in each iteration, forward actions process the output from the 

training data set, and backwards actions update the weights  αm  and  βm. Forward and backward 

steps are run, starting near a linear learning process with mean 0 and variance 1 in input variables 

and  randomly  selected  values  close  to  0  in  weight  until  the  sum  of  squared  errors  (selected  loss 

function) is optimized with two consecutive iterations differing by less than a predefined threshold 

or the maximum number of iterations is reached. 

Because of non-linearity of expression in Equation (2), a heuristic that guarantees a global 

minimum is required (for example, R software employees a quasi-Newton approach and Matlab 

implements the Levenberg-Marquardt method). Nevertheless, obtaining a global minimum can lead 

to overfitting and lack of generalization, so a regularized loss function (see Equation (3)) is used in 

practice. 

 

(3)    

 
 

It is important to highlight that in the cross-validation process followed to determine the optimal 

network architecture, the following assumptions are recommended: 

 Hidden network neuron number. h hyperparameter in (Equation (3)) controls the strength of the 

weights, so that it is possible to train the neural network with a high number of neurons and 

discard those with less significant weights. 

 Initial weights are randomly selected and the algorithm is executed several times for each data 

set. 

 Activation function selection. Sigmoid functions are preferably selected for the hidden layer 

neurons, and identity for the output layer. 

 

3. Review of ANN Models for Prediction in the Renewal Energy Sector 

 
 Scope of the Review and Prediction Model Classification according to Model Use 

According to the above-mentioned advantages of using ANNs for prediction, several authors 

have implemented them in the different types of renewal energy sources. A significant number of 

contributions have been made for three renewal energy sources: photovoltaic, wind and hydraulic 

energies, even though there are some references on other sources of energy, in a minor volume [44– 

47]. 

When we explored all these renewable energy prediction models based on ANN, our intention 

was to focus on those incorporating intelligence to anticipate reliability problems, those adding new 

capabilities to improve asset maintenance policies. 

The rationale for this is the importance that maintenance and reliability have in this sector, to 

increase the efficiency of the energy generation process. Failures are many times hidden and they end 

up having a high impact on business plans due to derived energy production losses. In this sector the 

risk of failures could even reach ten times the purchase equipment cost [48]. 

Difficulties in the detection of failures can be overcome with ANN models, which are more 

suitable to deal with changing environmental conditions for each specific asset geographical location, 

by using permanently updated intelligent algorithms [49]. Our idea is to identify how different 
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learning, etc.) to serve as an important guide for all companies with renewable energy facilities that 

want to use these techniques to predict failures and to improve energy supply continuity 

(implementation techniques, main input variables, indicative results, etc.). 

In this research we have concentrated our literature review on specific databases (Sciencedirect, 

Elsevier, Scopus, IEEE Xplore) and several keywords (renewable energy, photovoltaics energy, 

hydraulic energy, wind energy, wind power, neural network, prediction model, energy forecasting, 

failure detection, intelligence artificially, machine learning, deep learning), and as a result we have 

found different utilizations of ANN models for prediction, that we will classify as follows: 

 Ideal models to predict only energy production (named in this paper IMEP); or 

 Energy prediction models incorporating meteorological forecasting aspects (named MFM); and 

 Asset reliability assessments models (named ARAMs), the ones we are interested in, describing 

algorithms for early problem detection for assets, algorithms that are part of a defined CBM 

(Condition Based Maintenance) policy, many times resulting as an output of the RCM 

(Reliability Centered Maintenance) methodology (RCM is the most employed methodology to 

design preventive maintenance policies [50] given an asset’s operational context [51], including 

risk quantification [52] of failures under existing operating and environmental conditions 

[53,54]). 

Concretely, ARAMs have to follow international standards so any future change, modification, 

improvement, management of the solution will be very much facilitated and understood. For a wide 

comprehension of the ARAM, potential is needed to analyze its implementation cases for three 

components [55]: monitoring, diagnosis and prognosis. Guillen et al. [56] describe these components 

in terms of failure mode control: 

 Detection/monitoring is associated with the system states (for example, the transition from 

function state to fault state) and, in general, with normal behavior-anomalies distinction (in 

reference to defined baseline data); 

 Diagnosis is associated with the location of the failure mode and its causes; 

 Prognosis is associated with the evolution of the failure mode or its future behavior (risk of 

failure and remaining useful life at the current time). 

Detection is focused more on the functional failure (the way in which a system is unable to fulfil 

a function at the performance standard that is acceptable for the user) and, diagnosis and prognosis 

are focused on failure mode (the effect by which a functional failure is observed [ISO 13372:2012, 

Condition monitoring and diagnostics of machines—Vocabulary]). 

Therefore, ARAMs have to link detection, diagnosis and prognosis, with the failure mode 

determination, identifying parameters required to predict it (consequences of the monitoring outputs 

can be registered, listed and catalogued to be used). The main effort consists of identifying the 

monitoring variables required to predict failure modes (when that is feasible). Failure 

detective/predictive intelligence in ARAM processing could be implemented in a formal way 

combining not only failure mode degradation solutions but also energy generation predictions 

depending on the different operating and environmental conditions. 

As the reader may guess, efforts in ARAMs come normally together with investments in a 

suitable combination of condition monitoring, inspection, and/or testing and analysis technologies, 

besides new tools to release the subsequent maintenance actions, improving prediction processes 

efficiency [57]. 

In this scenario, international standards become a key aspect to ensure the data combination, in 

a structured and sustainable way, of the three main sources of information: maintenance 

management systems, reliability analysis systems and condition monitoring systems. 

Hereafter, the reviewed contributions for each type of renewable energy source will be 

presented; we describe their main scope and classify them within one of the above three referred 

categories (IMEP, MFM, and ARAMs). 
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In the area of solar energy, the application of ANN models is in continuous development [58,59], 

and more particularly within the field of PV systems, Photovoltaic Solar Energy. In this case IMEP 

and MFM are the most common models in literature, although there is a recent growing use of ARAM 

models. 

Table 2 shows a compilation of authors that have developed ANN models in PV energy, 

describing the type of model according to previous classification (A = IMEP; B = MFM; C = ARAM) 

in one column, the employed methodology in a second column (D = Neural Network; E = 

Comparisons Models; F = Others), and another column with the parameters considered for prediction 

(T = Temperature; D = Date; H = Humidity; WH = Work Hour; SR = Solar Radiation; O = Others). 

Notice that some prediction works not including ANN are also considered to appreciate the 

modelling techniques that were used for similar problems (see the comments included in the Table). 

Also, we have noticed that many authors have developed comparative studies of different predictive 

techniques, all of them indicating how ANN models are an interesting alternative approach requiring 

admissible computational effort. 

 
Table 2. Reviewed ANN studies in Photovoltaic Energy. 

 
 

Obj. = Objective (A = IMEP; B = MFM; C = ARAM) Met = Methodology (D = Neural Network; E = 

Comparisons. Models; F = Others) T = Temperature; D = Date; H = Humidity; WH = Work Hour; SR = 

Solar Radiation; O = Others. 1. Validate the use ANN 2. The improvement of ANN vs. classic models    

is included. 3. ANN used a complement for a higher level reliability analysis framework. 4. Authors 

recommend complementing the analysis with other techniques. 

 

In the table we can also appreciate how ANN models are used to predict either n industrial 

photovoltaic systems or domestic installations. Both types of predictions have been oriented to gain 

knowledge to link solar radiation patterns with energy production ones. 

The results obtained have been very positive from the point of view of the correlation 

coefficients, higher than 90% and with a mean square error less than 5%. The most common input 

variables in predictive models are temperature and radiation. These studies have been carried out in 

different parts of the world and at different times. 

Finally, the most recent references, based on the acceptance of ANN to obtain the predictive 

models, have taken a step further. In the ARAM case, powerful detective energy productions models 

based on ANNs, comparing expected with real energy production, are focused on to detect asset 

functional failures. These models improve energy efficiency besides reliability. 
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Concerning failure diagnosis and prognosis, an extra effort is required to properly measure the 

different failure mode consequences in order to identify the cause and expected behavior pattern of 

the failure modes [33,71]. 

 
 ANN in Wind Energy 

Wind energy is the kinetic energy generated from wind and is transformed into another type of 

energy, as electric energy for its consumption in industry and homes. The application of ANN models 

to replicate production behavior patterns of wind energy is extensive, using as input environmental 

variables wind speed or humidity. These models look for relevant links among such variables and 

the detection of anomalies in energy production. 

In the same line as before, the reader can find in Table 3 a comparison of ANN application on 

wind farms. As in the Table for PV, there is a column about the study objective (A = IMEP; B = MFM; 

C = ARAM), a second column with the employed methodology (D = Neural Network; E = 

Comparisons Models; F = Others), and another with the used parameters for prediction (WS = Wind 

Speed; H = Humidity; T = Temperature; SR = Solar Radiation; WH = Work Hour; O = Others). Here 

again, authors compare techniques in order to describe the advantages of ANNs and new techniques 

of data mining with respect to the physical and classic models. Previous reviews in this field remark 

on the increasing use of ANNs to predict, due to good and fast adaptation when faced with a peculiar 

quality of unknown environmental situations. 

 
Table 3. Reviewed ANN studies on Wind Energy. 

 
 

Obj. = Objective (A = IMEP; B = MFM; C = ARAM) Met = Methodology (D = Neural Network; E = 

Comparisons Models; F = Others) T = Temperature; D = Date; H = Humidity; WH = Work Hour; SR = 

Solar Radiation; O = Others. 1. Validate the use ANN 2. The improvement of ANN vs. classic models    

is included. 3. ANN used a complement for a higher level reliability analysis framework. 4. Authors 

recommend complementing the analysis with other techniques. 

 

ANNs have been used by authors to predict the energy production of wind farms in different 

parts of the world, obtaining good results with very low mean square errors. The developed models 

have been effective in order to plan production of energy and especially for their importance to 

business models. For the entire system, short- and medium-term wind speed prediction statistics and 

data mining algorithms have been more frequently utilized. The common input variable for all 

referenced authors has been wind speed. 

References [80] and [82] have been oriented towards failure diagnosis/prediction through 

ARAM testing the effectiveness against other AI-ML (Artificial Intelligence-Machine Learning) 

models, such as LR (Logistic Regression), Support Vector Machines (SVM) or Random Forest (RF) 

algorithms in order to identify faults and reasoning about root causes. Recent research on wind 

turbine condition monitoring focused more on individual components than on the entire system. It  
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outgrow the more important alarm. In both references, appropriate parameters are determined and 
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they can provide technical reference values for online monitoring, early warning, and condition- 

based maintenance of wind turbines. 

 
 ANN in Hydraulic Energy 

Hydraulic energy is that source of renewable energy obtained through potential and kinetic 

energy and is produced by water flows, rivers, rains, thawing, snow, etc. 

As with the other renewable energy fields, there are numerous studies on the application of 

ANNs in hydraulic energy. 

In Table 4 we can see how the possibility to simulate non-linear behaviors of the hydrographic 

basins with ANN models is lately configuring an alternative to the use of conventional time series 

models. This is the longest implemented renewal technology and with the most static industrial 

installations on very specific orography determining their locations. Accordingly, the most ancient 

ANN references are focused on this type of energy. 

 
Table 4. Reviewed ANN studies on Hydraulic Energy. 

 
 
 
 
 

Obj. = Objective (A = IMEP; B = MFM; C = ARAM) Met = Methodology (D = Neural Network; E = Comparisons 

Models; F = Others) T = Temperature; D = Date; H = Humidity; WH = Work Hour; SR = Solar Radiation; O = 

Others. 1. Validate the use ANN 2. The improvement of ANN vs. classic models    is included. 3. ANN used a 

complement for a higher level reliability analysis framework. 4. Authors recommend complementing the analysis with 

other techniques. 

 

Two main characteristics define the references, the preference in the utilization of 

backpropagation network, and the orientation towards predictive models, in concrete, using it to 

predict the water flow as a fundamental variable to know electrical energy production. 

Table 4 has been configured as previous ones, with a column for the model classification (A = 

IMEP; B = MFM; C = ARAM), a second column with the employed methodology (D =  Neural 

Network; E = Comparisons Models; F = Others), and another one with the parameters used for 

prediction (RF = Rainfall; HD = Hydrometric Data; T = Temperature; WP = Water Pressure; O = 

Others). 

The main advantage of ANN application in the hydraulic field is the development of 

simulation models and real-time dynamic prediction, predominantly in a short-term due to the 

normal variation of the climatological conditions. The most used input variable in these 

predictive models has been hydrometric data. 

In this field, the main disadvantage of ANN application is that a large amount of historical 

data are required to obtain good models and results, while in previous energies (photovoltaic and 

wind) the assets are distributed in farms in a replicated way and so offer enough data that 

reproduce the same operation context. That is to say, in the two previous energy sources, a wide 

range of information is available to be processed to obtain a reliable prediction while here it can be 

scarcer. ARAMs are less implemented than the other types and are centered on the single failure 

mode water leakage; a clear example is reference [94] for failure detection and localization of it, 

searching 
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regularities and patterns using not only AI-ML ANN but also Logistic Regression and Support Vector 

Machine. 

 
 ANN in Other Energy Sources 

In other renewable energy resources, such as biomass, biogas, geothermal, hydrogen, etc., we 

have found less contributions including ANN models, according to the number of plants dealing 

with these energy sources in the sector. However, ANN models have also here a high potential for 

prediction of energy and reliability, as the reader can see in sample contributions in Table 5. ANNs 

have offered valuable results in several case studies based on their adaptation on real-time in short 

specific time frames, and the case studies show as key difficulties the necessity of huge amounts of 

information and an adequate predictive parameter selection. 

Table 6 shows some other references about recent research tendencies, mainly focused on other 

artificial intelligent models and on how to manage the problem of the lack of data. The solution 

adopted is sometimes to use historical data or data from other areas (see comments in the table). 

Due to these novelty sources of energy, the research majority is orientated to develop advanced 

IMEP and MFM models searching short- and medium-term estimations, more than to develop 

degradation models of specific components of the system. ARAMs could be an important tool for 

detection and diagnosis, because as in the hydraulic case, there are difficulties to obtain enough and 

replicated data from different plants, and even worse, by assets purchased from different suppliers. 

Failure mode diagnosis and prognosis are the challenges in this section, and they should be initiated 

based on research of the same equipment but in other industrial scenarios; simplifying the parameter 

selection method could effectively simplify the structure of the model, using a comparative study of 

consistency with the observed values. 

 
Table 5. Reviewed ANN studies on Other Energies. 

Author Year Case Study Obj.     Met. Parameters Res. 

[47] 2009 
Beijing Gaobeidian 

 

B DE Temperature, initial pH and  glucose concentration. 1,2 
 (China)  

[44] 2010 Tarragona (Spain) A E CO2, water, carbon monoxide, hydrogen and gaseous hydrocarbons 1,2 

 

[46] 

 

2011 

Power plant in Simav 

region, Kutahya, 

 

B 

 

DF 

 

Ammonia–water mixture as the working fluid 

 

1,4 

  Turkey     

[45] 2012 
Local  agricultural farm 

in Ogbomoso, Nigeria 
B DF 

Mixed substrates of saw dust, cow dung, banana stem, rice bran and paper 

waste. 
 

 

Obj. = Objective (A = IMEP; B = MFM; C = ARAM) Met = Methodology (D = Neural Network; E = 

Comparisons Models; F = Others) T = Temperature; D = Date; H = Humidity; WH = Work Hour; SR = 

Solar Radiation; O = Others. 1. Validate the use ANN 2. The improvement of ANN vs. classic models    

is included. 3. ANN used a complement for a higher level reliability analysis framework. 4. Authors 

recommend complementing the analysis with other techniques. 

 
Table 6. References about recent research tendencies. 

 

Author Year Case Study Obj. Met. Parameters Res. 

[98] 1991 Seattle/Tacoma (EEUU) B D Hourly temperature, expected future temperature and load data 1,2 

 
[99] 

 
2016 

 
Germany 

 
B 

 
DF 

Historical NWP (Numerical Weather Prediction) data and the 

produced power in a three-hour resolution available for 990 

 
1,2,4 

     days.  

 

[100] 
 

2016 
Ningxia, Jilin, Inner  

B 
 

D 
 

Historical records of wind speeds. 
 

1 
 

Electrical Load, Temperature, Humidity, Rainfall, Voltage, 

Charging Rate, State of Charge, Power Quality. 

Wind and solar times-series data from NREL 

(https://www.nrel.gov/grid/wind-integration-data.html; 

https://www.nrel.gov/grid/sind-toolkit.html) 

 

1,2 

 

 
1,2,4 

 

Obj. = Objective (A = IMEP; B = MFM; C = ARAM) Met= Methodology (D = Neural Network; E = 

Comparisons Models; F = Others) T = Temperature; D = Date; H = Humidity; WH = Work Hour; SR = 

Solar Radiation; O = Others. 1. Validate the use ANN 2. The improvement of ANN vs. classic models 

1 

 

[101] 

 

2018 

Mongolia and Gansu, China 
 

China 

 

B 

 

E 

 

[102] 
 

2018 
 

Washington (EEUU) 
 

A 
 

D 

 

http://www.nrel.gov/grid/wind-integration-data.html%3B
http://www.nrel.gov/grid/wind-integration-data.html%3B
http://www.nrel.gov/grid/sind-toolkit.html)
http://www.nrel.gov/grid/sind-toolkit.html)
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is included. 3. ANN used a complement for a higher level reliability analysis framework. 4. Authors 

recommend complementing the analysis with other techniques. 

 

4. Discussion of Results Regarding ANN Prediction Models 

The historical tendency of the application of ANN models in energy generation prediction grows 

according to the promotion of the different renewable energy sources. Table 7 summarizes the 

tendency and evolution of the application of ANN in prediction problems in Photovoltaic, Wind and 

Hydraulic energies. These contributions are presented according to: 

 The source of energy: Photovoltaic, Wind, Hydraulic, other sources and new related research. 

 The type of model: IMEP; MFM and ARAM. 

In Table 7, the reader can also find the number of contributions, per source of energy and model 

type, per year. It can be appreciated how for each type of energy source, ANN model applications 

show a similar pattern, consisting of an initial sort of induction phase, when the models are 

introduced, developed and deployed, and after that, more pressure is placed on the efficiency of the 

models in what we could call an efficiency improvement phase. 

 
Table 7. ANN tendency by Renewal Energy field. 

 
 

Publication Year 
Photovotaic Wind Hydraulic Other 

 

  IMEP  MFM   ARAM  IMEP  MFM   ARAM  IMEP  MFM  ARAM   IMEP  MFM ARAM  
 

2018  4   4  2  1 1 

2017  8 1  2  1 1   

2016  1        2 

2015   1        

2014     1 1     

2013    1 1 1     

2012          1 

2011          1 

2010  1       1  

2009          1 

2008 1 1         

2007     2  1    

2006           

2005 1          

2004     1      

2003           

2002           

2001           

2000  1     2    

1999       1    

1998       1    

1997           

1996           

1995       1    

 

Table 6 shows that references about hydraulic energy applications are the first to appear, in line 

with the maturity of the technology, while there have not been more publications recently. For this 

source of energy, all existing ANN publications have focused on energy prediction modelling. In the 

other two sources of energy, we can find more recent ANN model applications, initially solely energy 

prediction models, but lately a few of them oriented to specific failure mode detection. In Table 6, 

this tendency is distinguished through time intervals; in the top of the reference list, a specific 

orientation to failure detection can be acknowledged. 

Conventional (time series & regressions) prediction techniques were common in many initial 

contributions, while in the last publications, ANNs become a more popular tool as long as the scope 

of the studies also changes to improving efficiency in energy production by anticipating failures, 

avoiding economic losses as a consequence of low reliability. 

Concerning model categories, many early works included meteorological forecasting models, 

along with the physical models as input. Subsequent models included meteorological variables 

besides physical variables in order to produce an ideal model of energy production, as close as 

possible to reality. Later publications are very much related to energy production efficiency, but also 
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deal with a specific single type of failure mode of the asset. This tendency towards energy efficiency 

modelling is in line with the price reduction of sensors and increase in processing capacity of SCADA 

systems, located in plants and/or embedded in particular assets, to collect information from asset 

degradation, environmental and operating conditions. 

We have found that 86% of the contributions use ANN models for prediction. It is mentioned in 

the literature [88] how more than 40% of prediction studies are related to ANN models. In addition, 

the most used ANN model is the ANN Backpropagation model (81%), mainly with the Levenberg- 

Marquardt algorithm (which requires high computation capacity) for minimizing MSE. Another less 

used algorithm in ANN Backpropagation is the Quasi-Newton algorithm. In all the studies the 

correlation coefficient is higher than 80%, and results are improving in recent references with 

convolutional and recurrent ANN models. The most employed parameters for prediction and energy 

source are the following (see Figure 2): 

 Photovoltaic Energy: Temperature and Solar radiation. 

 Wind Energy: Wind Speed. 

 Hydraulic Energy: Hydrometric data, temperature, rainfall and water pressure. 

 

 

 

 

 

 

 

 

 

 

 

 
T= Temperature; SR= Solar Radiation; D= 

Date; H= Humidity; WH= Work Hour; O= 

Others. 

HD = Hydrometric data; RF = Rain fall; 

WP = Water pressure; T = temperature; 

O =Others. 

WS = Wind speed; T = temperature; 

H = Humidity; SR = Solar Radiation; WH = Work 

hour; O = others. 

 

Figure 2. Most used parameters in the Renewal Energy field. 

 
The main advantages of the use of ANN models, compared to the use of more conventional 

techniques (time series & regressions), are the following: 

 Prediction models with good correlation coefficients. 

 Quick fitting and flexibility to behavior patterns (pattern-recognition and fault tolerance 

capability including data absence and noise). 

 Better adaptation to complex and non-linear problems. 

 Adjustment to dynamic changes in real time. 

 Quick processing and easy integration in systems. 

 Availability increment of energy production due to proactivity in fault prediction. 

On the other hand, the main drawbacks of ANN models in the renewable energy sector are: 

 Lack of asset condition monitoring variables. Many companies focus on operation monitoring 

variables instead. 

 Presence of poor-quality data, without discerning the different state conditions and without 

correlation with preventive and corrective activities and their execution results. 

 Difficulty to reach a local minimum, and to optimize the model coefficients. Need to select 

proper biases and initial weights. 

 Lack of out-of-the-box integration in SCADA systems, due to commercial solutions avoiding 

integration with external intelligent modules. 

 Lack of qualified professionals with knowledge in these recent types of energy sources, in 

condition-based and predictive maintenance, and in parallel with experience in big data and 

machine-learning techniques. 

Photovoltaic Energy  Wind Energy 
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New developments in prediction tools based on AI could be employed or combined with ANN 

models as the quantity and quality of data variables increase. As an example, the following machine 

learning techniques are the most recommended to be employed [103–109]: Bi-directional Long Short- 

Term Memory (BLSTM), Deep Learning and Neural Network, Extreme Machine Learning, SVM, T- 

Basts, Random Forest and Boosting. 

 

5. Discussion of Results Regarding ARAM ANN Models 

The necessary knowledge to develop ARAM case studies using ANN models will be very much 

facilitated and understood if the frameworks for their implementation are based on standards. 

Standards can help in the process of capturing new monitoring variables and to improve decision 

making, adopting a more risk-oriented perspective. Most of the ARAM case studies have been 

successfully implemented for failure detection and correction in the short and medium-term. 

However, few examples were found for ARAM as diagnosis and prognosis tools (only specific failure 

mode cases where there was advanced knowledge about degradation and progressive failure 

consequences). 

In grid connected energy plants, the results had the advantage of more replicated accessible data 

offering better accuracy. Clearly, benefits of ARAMs derived in a quick implementation, and in 

important reliability improvements. Finally, some of the literature references show how ANN models 

also allow easy implementation of a parallel agent set that could work with different production 

models, and then be combined in a certain voting system. 

 
6. Conclusions 

ANN models try to replicate complex system behavior patterns and are able to learn through 

experience, providing many possibilities for their general use. On the other hand, ANN models 

experienced a great controversy in their utilization because of their mathematical complexity and the 

huge amount of data needed. 

Numerous contributions reviewed endorsed the ANN model utilization under the following 

premises: 

 For new knowledge generation, to find knowledge that it is difficult to reach, mainly with non- 

linear relationships among variables. 

 Using a wide range of variables to improve prediction accuracy. 

 Counting on good procedures and information systems as necessary tools to document 

activities, and data from variables, in order to reproduce results with a high quality. 

 Not stressing to pursue exact or very accurate results, but flexibility and dynamic adaptation in 

the model implementations. 

The type and scope of the different studies were presented, the prediction variables were 

analyzed and also different features concerning training methods, algorithms used and data 

requirements were shown. 

Through the reference revisions, this paper discusses the necessity of support ARAM predictions 

within a structured framework, clarifying the steps and concepts based on international standards, 

in order to address a sustainable knowledge. 

As the main contribution of this paper, we identified the opportunity to develop a new research 

line focused on the application of AI techniques, and more specifically ANN models, to characterized 

the reliability of renewable energy plants. Most of the reviewed references were focused on modelling 

energy production. 

Current results provide an important starting point to continue working with this type of AI tool 

to improve efficiency of this type of facility. In this capital-intensive sector, any minimal efficiency 

improvement in energy production could represent important economic savings in future business 

plans and crucial upgrades in service quality delivery. To that end, new developments in prediction 

tools based on AI could be employed or combined with ANN models as the quantity and quality of 

data variables increase, for instance: deep learning, SVM, T-Basts, Random Forest and Boosting. 
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Glossary/Nomenclature/Abbreviations 

ANN: Artificial Neural Networks 

AI: Artificial Intelligence 

ML: Machine Learning 

IoT: Internet of Things 

MSE: Mean square error 

PV: Photovoltaic 

RCM: Reliability Centred Maintenance 

RE: Renewable Energy 

SVM: Support Vector Machines 

Objective: 

A IMEP (Ideal models for energy production forecasting) 

B MFM (Models incorporating meteorological forecasting) 

C ARAM (Asset reliability assessment models) 

Methodology: 

D Neural Network 

E Comparison Models 

F Others 

Parameters: 

T Temperature 

D Date 

H Humidity 

WH Work Hour 

SR Solar Radiation 

WS Wind Speed 

RF Rainfall 

HD Hydrometric Data 

WP Water Pressure 

O Others 
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