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ABSTRACT 

This article reviews about ultrafine grained (UFG) materials treated by Severe Plastic Deformation. From the period 

of 1950’s, the researchers made a fountain stone for this technique. Over the last decades, this SPD technique 

experienced an enormous growth among the research field.   There was a development of different methods of SPD, 

production of various   SPD with improved and interesting results based on our requirement. Moreover, different 

post-processing techniques will also help to enhance the property of the SPD processed material.  This paper 

reviews the overall development of this technique, various methods of SPD, discussed the enhancement of the 

properties and finally concluded with some specific challenges and issues faced by the modern researchers. It may be 

helpful to those who want to specialize in bulk nanomaterials made by SPD. 
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  INTRODUCTION 

Grain size is a main factor which affecting nearly all aspects of the physical, mechanical and chemical behavior of 

polycrystalline metals to the surrounding media.  Hence, modification of grain size can able to design materials with 

preferred properties. Physical, mechanical and chemical properties can benefit greatly from the reduction of grain 

size. One  of  the  possible  ways  for  the  microstructural  modification  of  metals  is  Severe Plastic Deformation 

(SPD. Recent studies [1–4] told ancient model for grain refinement which gives a path of modern era.  The modern 

SPD technology begins from ancient work by P. W.  Bridgman  who developed  the techniques  for  materials 

processing  through  a  combination  of  high  hydrostatic pressure  and  shear  deformation .  In 1950s, Bridgman 

defined the process of SPD which evolved into new definition suitable for current scenarios any process of metal 

forming under an widespread hydrostatic pressure that may be used to execute a very high strain on a bulk solid 

without the overview of any important change in the overall dimensions of the sample and ensuring the capacity to 

produce unique grain refinement‖[7]. Carreker and Hibbard [8] showed that the yield strong point of high-purity 

copper benefits greatly from grain. They also pointed out that the outcome of the initial grain size vanishes at strains 

larger than 0.1 and for that reason the grain size has less impact on the strength under monotonic loading.  A related  

effect  is  also  happen  on  fatigue  property where  the  grain size of wavy-slip  materials  has  no  bearing  on  the  

fatigue  bound. These observations can also be related with dislocation substructure and size of the substructure. For 

the deformation and recrystallization behavior of metals and  the  effect  of evolving  texture  on  the  resultant  

properties, Gow  and  Cahn  [9]  explained  the significance  of crystallographic texture. Bell and Cahn [10] pointed 

out several features of mechanical twinning, which play a vital role in plastic deformation when accommodation by 

dislocation slip is hindered. Beck [11] emphasized the possibility of relieving the effects of work-hardening by post-

processing recovery. Segal et al [12]developed the method  of  equal-channel  angular pressing  (ECAP),  which  

later  evolved  into  SPD  technique.  As understood in the following segments, these idea sunder lying the modern 

concepts of SPD.Valiev et.al  begins the new options for refining the properties of metallic materials given by SPD, 

which shows the relationship between the enhanced strength and the exciting grain improvement imparted by SPD 

processing to a range of metals and alloys. Over the last decade, the Nano-SPD community which having an 

impressive group of researchers brings a thousands of publications on ultrafine-grained   (UFG)  and nanostructured 

materials produced by SPD. Some  more  relevant  articles  on  the  theme  can  be  found  in the proceedings of 
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symposia on UFG materials [15,16] and conferences of Nano SPD [17,18]. Further useful sources are the   reviews   

[19,20],   special   issues   of   Advanced   Engineering Materials   [21],   Materials Science   and Engineering A 

[22]and Materials Transactions [23,24].SPD  processing  techniques  becomes  so  popular  because  of  improving 

the  power  features of conventional metallic materials in a peculiar method. It is up to the factor of eight for pure 

metals such as copper and 30–50% for alloys [7, 25].In spite of inspiring property improvement accomplished from 

SPD methods, its application by industries has been rather inactive. But now-a-days, things are now starting to 

change, and there is a common feeling in the Nano SPD community that major breakthroughs in terms of industry 

scale applications of SPD based technologies are about to applicable .In this article we reviewed that the evolution 

of SPD process up to  the  current  scenario  and  the  possibilities  to  achieve  upcoming  developments  which  are  

to be  expected  from  SPD processing  technologies.  Special importance has been placed on the scientifically 

challenging facets of SPD rather on technological issues.   

 

METHODS OF SPD 

Among the methods formulated for grain improvement, SPD techniques are more popular and be situated taken for 

The effort of the present appraisal. These  methods  became  great attractiveness because  of  their  ability  to  

produce significant grain  improvement  in  completely  compact,  wholesale  scale  workpieces, therefore  giving  

more  ability  for  structural applications or uses. The grain sizes achieved from SPD methods lie within the range of 

sub micrometer (100–1100 nm) and nanometer (<100 nm). Previously, SPD-processed resources by such grain sizes 

are mostly raised to as Nano SPD materials [7]. Nowadays, it is according to conventional meaning.  More all-

inclusive reviews have materials through SPD techniques [20, 26–31].  We recommend the reader to the original 

mechanism for definite details and here only brief outline for SPD has been given. Afterward the historic work by 

Bridgman stated above [6,33], Langford and Cohen [34] and Rack and Cohen [35] in 1960s discovered that the 

microstructure of Fe–0.002% C subjected to high strains by wire drawing was refined to sub grain sizes in the 200–

500 nm range.  Most of sub-boundaries were low angle on the semi microstructures, so it could not regarded as 

suitable UFG in the logic of the usually accepted explanations [7].  Certainly, it is the prevalence of high angle grain 

boundaries that is generally considered a signature of UFG materials produced by SPD. This constitutes a clear 

boundary line among Nano SPD materials and nanostructured materials which is the conventional materials in 

modern days with sub grain structures produced by cold rolling.  This difference make SPD process a step ahead 

from all other process for microstructure refinement by deformation to gigantic strains. A large plastic strain 

imparted on a work-piece is a formidable and technically challenging task.  It should requires a substantial 

importance on tool design, which on one hand during material forming, it should be durable enough to sustain 

repetitive high loads and on the Other hand it must be suitable for materials processing without causing damage to 

the workpiece. A peculiar feature of SPD processing is that the high strain is imposed on material without any 

significant change in the overall dimensions of the workpiece. This is attained due to special tool geometries which 

prevent free flow of the material and will able to produce a significant hydrostatic pressure. The presence of this 

hydrostatic pressure is a sign for attaining the high strains which is the requirement for achieving exceptional grain 

refinement. Many crystalline materials including brittle under ordinary conditions can able are deformed to large 

strains without failure. Nowadays many varieties of SPD techniques, which employ this generic feature of high 

hydrostatic pressure and are readily available for fabrication, gave a great variety of UFG materials. Table 1: 

Schematic illustrations of SPD technique  
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2.1. Basic SPD processes  

Equal-channel angular pressing (ECAP) is the most highly developed SPD processing technique (Table1a). When 

the billet permits over the area where, two channels meet, here is an introduction of a simple shear strain.  The cross-

sectional measurement of the billet remains constant.  Therefore, the procedure permits repetitive pressing which 

leads to buildup of precise huge strains. There are some different variants of ECAP processes based  on  the  cycles  

of  the  billet  about  the pressing  axis  between  the  passes  are  usually leads  to different  results  in  terms  of  the  

microstructure and  texture  produced.  The definitions   of these   dissimilar ECAP routes are referred below [13, 

14]. The main benefits and basics of ECAP were first formulated by V. Segal in older publications [12, 38-42]. He 

defined ECAP as ―a method of deformation to give severe, uniform and concerned with simple shear for materials 

processing‖.  He also defined that ECAP is effective if (i) friction is kept at minimum between billets and die walls; 

(ii) the angle between channels is nearly to be 90º; and (iii) the sharp outside corner is completely filled which 

confirming that the shear zone is as slim as conceivable. The first requirement developed by applying surface 

hardening of the channel walls, mobile walls [37, 43], etc., and   the introduction   of   new   effective   lubricants   

[36, 44].   The   third requirement   is   to   understanding   the implication of  back-pressure  for  processing  the   

billets  with  unchanging microstructure  and  developed  mechanical properties[43,45,46].  By  following  Segal’s  

philosophy,  samples  with uniform  microstructure  through  the billet could be fabricated[47,48].   High pressure  
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torsion  (HPT)  involves  a  combination  of  high pressure  with torsional  straining  (Table1b).  A  main  

disadvantage  of  this  technique  is  for only  small  coin  shaped  samples  can  be  processed,  which  is normally  

5–15  mm  in diameter  and  1to 2   mm  in  thickness[28].  The HPT process is mainly used for research purposes 

due to size limits. Another issue on HPT is non-uniformity in deformation. Micro hardness (Hv) of HPT samples 

after many numbers of turns (N) as a function of the space from the center of the sample [53] In HPT process, the 

shear strain at the rotation axis should be zero and increases linearly in the radial direction if the geometry of the 

sample does not change.Thus, it shows that the material near the rotation axis of the job or workpiece is unreformed. 

Along with the other difficulties, compressive pressure and the number of revolutions of the anvil are adequately 

large is also notable as presented in Fig.1 [49].Vorhauer and Pippin [52] emphasized this inability by the fact it is 

virtually difficult or impossible to make a perfect HPT deformation because of the misalignment of the axes.   

Alternatively,   the growth of a uniform strain (Fig.   2)  And similar microstructure was called in terms of gradient 

plasticity theory joined with the microstructurally based constitutive modeling. 

 

Fig 2. Accumulated  shear strain as a function of  distance from  torsion axis for the first-order gradient model 

[53].Accumulative roll-bonding (ARB) was introduced by Saito et al. [55] in 1998 (Table 1c).This procedure 

overcomes  key  limitations  similar to  low productivity, small work-piece dimensions of the  latter etc.., which are 

tackled by ECAP and HPT. Saito et al. describes the method as a metal sheet is rolled to 60% thickness decrease or 

reduction. Then, the rolled sheet  is  cut  in  two parts  and  both  sheets are stacked  together  by making  the  

contact surfaces  with degreasing and wire brushing, so  restoring the original thickness of the sheet. The order of 

rolling, cutting, surface area preparing and stacking jobs are repeated continuously again, so finally a large strain 

imparted on the material. ARB was successfully applied to commercial-purity (CP) Al, the Al-Mg alloy AA5083 

and interstitial-free steel [56].  ARB can also be applied for the manufacture of metal matrix composites by covering 

mixed powders and exposing them to a process of roll bonding [57].Multi-axial forging was introduced as a 

technique for grain refinement in 1990s [58–60] (Table 1d). It is  also  known  as  Multiple  Direction  Forging  

(MDF)  which  work  under  three  orthogonal  directions.  Grain modification during  MDF  is  commonly  related  

with  dynamic  recrystallization  due  to  the  performance  of  the process  under  the  temperature  interval  of  0.1–

0.5Tm,  where Tm  is  the  melting  temperature. The method can be used for grain refinement in brittle material 

seven though in elevated temperatures. This method is also used for the manufacturing of large-dimensions  billets 

with microcrystalline (UFG) assemblies [61].Twist extrusion (TE) is introduced byBeygelzimer et al. as a shear 

deformation process [62–64] (Table1e) The process is simple where a billet is extruded over a twist die. The benefit 

of this method is its high upscaling ability. Non-uniform deformation is the main limitation for this process as like 

faced by HPT where the deformation nearer to the extrusion axis is smaller. Further,Orlov et al. [65] noted that this 

technique is not much efficient than ECAP or HPT.2.2. Derived SPD processes.The above basic processes are 

successful, some exotic methods were developed for different shapes and sizes. These are named as derivative SPD 

processes. A list of these techniques is listed below:     Repetitive  side extrusion [66];    Rotating die   ECAP [67];    

Parallel   station ECAP [68];     Hydrostatic   extrusion [69–71]     Hydrostatic extrusion combined with torsion [72];     

Repetitive corrugating and unbending (RCS) [73–75];     Constrained groove persistent [76];     Repeated extrusion–

compression (CEC) [77];     Cyclic closed-die forging (CCDF) [78];     Cone–cone technique (CCM) [79];     

Cryogenic rolling [80, 81];     Unequal rolling (ASR) [82];     Nonstop frictional angular extrusion (CFAE) [83, 84];     

Friction stirring handling (FSP) [85, 86];     super short interval multi-pass rolling (SSMR) [87,88];     Severe torsion 

strain (STS) [89, 90];     Torsion extrusion [91];     ECAP in rotation tooling which the conventional stable die is 

exchanged by rotating tools [92];     Reversed shear rotating [92];     Transverse rolling [92];     Unequal channel 

angular persistent (NECAP) for plates happed billets [93];     Tube channel pressing [94];     KOBO creating [95];     
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High-pressure tube twisting (HPTT) for thin-walled tubes [96];     Cyclic increase–extrusion CEE—a modified CEC 

process [97];     Simple shear extrusion [98, 99];     vortex extrusion [100]; helical rolling [101];  high- pressure 

sliding [102].It  is  found  that  strength and  ductility might  be importantly  increase , once  ECAP  method were  

combined  with annealing  /  post  ECAP  processing  like conservative rolling,  drawing  or  extrusion.  The benefits 

of this method to increase strength [103-105], adjust texture [106] , ductility [107-109]. In conclusion,  fresh  

integrated processing  schemes  have  been  recently  developed  and  their  derived  properties  are  somewhat  

raised  when compared to the single process [110-112] III .PROPERTIES OF SPD PROCESSED MATERIAL 

 

3.1 Strength and ductility  

Strength and ductility are common primary parameter of a material, which will assign all other mechanical 

characteristics.  These  properties  are  grain-size  dependent  because  it  is  more  affected  by  SPD process than 

any other mechanical properties .Moreover, many properties  are directly governed by strength and ductility. 

Improving strength and ductility in same time is considered as a very interesting task. For this, a plan has been 

followed by Hall–Petch relation which relates yield stress σy and the grain size d:1𝜎𝑦  = 𝜎0  + 𝐾𝐻𝑃 𝑑−Where 𝜎0  - 

friction stressKHP– constant for a given materials we seen earlier, there are number of various SPD processes are 

available (Table 1). In most of the cases, among them, the common trends seem to be clear that while enhancing the 

strength there will be a loss of ductility y. It is illustrated in fig 5.where the variation of strength with number of 

ECAP passes. Combination of high flow stress and low strain-hardening capability is the key reason for loss of 

ductility. In some other cases, the tensile ductility of contained plastic flow in  the  post necking regime  can  

increase  remarkably. It  was proved  in  Al  alloy  6061[148],  Ti  [149]  and  Fe–36Ni  Invar  [150]. The results for 

the enhancement of both strength and ductility showed on Ti [151], Cu and Cu–Al alloy [146,152,153], Cu–Zn 

[154], Al-Mg–Sc [155] and Al–Mg–Si [156].  Moreover,Zhao et al.   

 

 [154] developed Fig 5 (a)Tensile stress-strain curves  (b) S–N fatigue plot for SUS 316L austenitic stainless steel 

after ECAP [147] SPD processed materials is in fact higher than that nanostructured materials, for example, by cry 

milling  [141]. ECAP processed CP Al and ARB processed UFG Al and AA6016 are well revealed for enhancement 

of ductility [142,143]. However, Markushev and Vinogradov [132] pointed out that there is no progress in ductility 

for non-age-hard enable Al-Mg alloys, such as AA5056. But, in age-harden able Al alloys, it is found to be most 

receptive to SPD in terms of structure refinement, strength improvement and ductility perfection [27,144–145]. As  a  

outcome  of  SPD  processing,  uniform  elongation  does  not  commonly improve,  but  however, the material's  

resistance  to  a multistep processing schedule which involves ECAP process followed by cry drawing and cry 

rolling. They delivered a method for tremendous improvement of strength and ductility. Another strategy for the 

enhancement of strength coupled with improved ductility is named as delayed Necking.  It  was  accomplished  by  

mechanisms  of  deformation  other  than  displacement  based  ones,  such  as  stage changes or twinning. These 

mechanisms are widely used in steels, which are referred as transformation induced   plasticity   (TRIP)   [157]   and   

twinning induced   plasticity   (TWIP)   [158]. The tensile neck formation raises the stress trial finality at the neck 

[159]. Since this, the marten site nucleation increases in austenitic TRIP steels [140].  A  local  phase  transformation  

with  high  stress absorptions  leads  to  local  necking  which enhances  uniform elongation. Tao et al. [160] 

highlighted that the phase conversion delivers a source of local strain hardening when austenite is replaced with 

marten site. Zhao et al. [161] verified that Successful implementation of the twinning-based deformation plan by 
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using the major leads of TWIP alloys with little stacking fault energy (SFE).  He found that UFG brass–10 wt. % Zn 

with a SFE of 35 mJ m–2is  much higher strength than UFG copper with a SFE of 78 mJ m–2 and the ductility of 

this material was also increased. It is exemplified in fig 5 for a stable SUS 316L austenitic stainless steel. Because 

oits low SFE, the deformation twinning of this steel was activated during ECAP processing at 150 ºC. After three 

ECAP passes by route, a nanoscale grain structure was made.  

 

Fig. 6 The Wohler plot comparing fatigue lives and endurance parameters for conservative and SPD-manufactured Cu-based 

alloys (Cu–Cr and Cu–Cr–Zr)This nanostructured steel provides an outstanding fatigue performance and notable 

thermal stability as well. 

3.2 Fatigue and creep behavior 

 After the property of strength and ductility, fatigue and creep behavior is also an important property to analyze and 

a challenging task too. Mechanism to enhance strength strictly obeys Hall- Petch relation which is extended  towards  

sub-micron  grain  size  and  shows  the  need  of  grain  sizes.  But, however, based on the previous studies, our 

history shows that fatigue performance does not exhibit durable grain-size necessity [162-165].  So far, when ECAP 

process is combined with other thermomechanical treatments, the fatigue of UFG metals were gained. The research 

work on creep actions of UFG materials manufactured by Sever plastic deformation is very slight.Sklenicka et 

al.[166–168] emphasized the different factors which affecting the creep performance of pure Al, pure copper and  

the  binary  Al–0.2  wt. % Sc alloy  processed  by  ECAP. Thus it is noticed that the  creep  behavior intensely 

depends on number of passes or cycles, a reduction in  creep resistance on every successive pass. It is due to the 

number of factors including microstructural variations, homogenization of microstructure and Nano porosity 

induced by ECAP. 

3.3 Thermal stability  

Improving numerous properties in the same period is a very challenging task for materials science which provides 

multi-functionality. Along  with the strength and  ductility, thermal constancy,  electrical conductivity and  corrosive  

resistance  are  also most  important  in such  cases  that could  not  capable  to sacrificed. Material and their 

application depends on, a list of properties according to their application needs to be obtained [169]. In most of the 

cases, thermal stability is vulnerable point of various SPD-treated materials. For  example,  SPD  handled  pure  

oxygen-free copper  provides  unfortunate  thermal  stability  [170-172].  It has propensity to recuperate during 

storage even at room temperature because during severe straining, annihilation of excess dislocations accumulated 

[173]  (Fig.  11a).  It  is  clearly  shows  that ,rate  of  recovery depends  on  the number  of ECAP  passes.  For SPD-

manufactured copper, there is no significant change in microstructure up  to115–150 ºC, but in the range of 150 to 

250 ºC recovery followed by recrystallization and abnormal grain growth takes place (Fig. 11b).  After hardening at 

200 ºC for 10 min, there is a transformation of UFG structure into a bimodal one and at higher temperatures it is 

evolved into fully recrystallized coarse-grained structure. It results in loss of stability depending on the purity of 

copper. Several processes have been used to overcome this type of limitations and to enhance multifunctional 

properties of SPD materials. Some of the processes include grain refinement, strain hardening, solid solution 

hardening and precipitation hardening. When the above post processes are applied to UFG metals, the following 

measures have been followed. (a)  Post-process annealing carried under recrystallization temperature relieves 
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internal stresses and increases work-hardening capacity. This develops the whole ductility of cold-worked materials 

 

Fig. 11 (a)and (b) Thermal stability of ECAP processed copper (99.96%), (c)SUS 316L stainless steel(b)  Titanium 

with  hcp  crystal  lattice  indicates  high  thermal  and  microstructural  stability  in  cyclic  loading, recollecting its 

UFG microstructure up to 450 ºC [175] and exhibiting no cyclic softening during Low Cycle Fatigue (LCF) 

[149,176] for ECAP treated iron.(c) Stabilization by solutes which prevents grain coarsening by pinning of grain 

boundaries [47,179]. (d) Particle-induced stabilization [47,180,154].(e)    Grain boundary engineering was advised 

by Watanabe [177,178] defines designing a high-temperature materials adventures the clue of advanced stability of 

special grain boundaries with low energy. 

3.4 Corrosion resistance 

Prospective engineering applications, corrosion resistance are an important property and Improvement of this 

property is also a challenging task.  Corrosion in single-phase polycrystalline metals is mainly depending upon grain 

size and SPD processed strengthening mechanism should deteriorate the corrosion behavior.  Corrosion could 

happen in three main features (chemical, electrochemical pitting), stress corrosion cracking (SCC) and corrosion 

fatigue. Investigations carried out on only ECAP-processed copper based on these aspects [182-186].  In this 

investigation, SPD process as a better conclusion.  While increasing the mechanical characteristics does not 

compromise the overall corrosion resistance and improves the SCC and corrosion fatigue resistance also. This 

statement is confirmed by comparing ECAP processed copper with coarse-grained Cu poly-crystals there is a 

localized intergranular corrosion in coarse-grained Cu polycrystals where such homogeneity of corrosion damage 

found in UFG Copper (Fig. 13a and b). These findings were  followed  by many researchers  who  found  improved  

corrosion  resistance of UFG  Cu  [187–188],  Aland some Al-alloys [181,189–191], titanium [192],interstitial-free 

steel [193], austenitic stainless steels  316L[194] and 304 [195], Iron ,Cr [196], Mg [197] and Magnesium -based all  

 

 

 SEM micrographs of ECAP copper (a) UFG state after ECAP and (b) coarse-grained state after annealing at 820K 

for 25min. 

 

4. CONCLUSION 

In  these  sections,  we  presented  a  brief  past  of  SPD  techniques,  many  SPD  approaches  and  the properties  of 

SPD  processed  UFG  materials.  This review will help as an introduction and for the readers those who are 

specializing in SPD process.  This paper also gave fundamental problems of scientific challenges face by the 
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industrial application and we highlighted those challenges throughout the manuscript. However, there are large 

numbers of concepts which have established thorough explanation is mislaid in some ideas. Even though the 

evidence for the responsibility of bimodality of the grain structure enhancing the respectable balance between 

strength and ductility are delivered, there are some suggestions that the connection between enhanced strength-

ductility equilibrium and the occurrence of a bimodal grain construction are not verified. The improvement of 

corrosion resistance and propagation of the sample outcomes in some categorized where the surface phenomenon is 

affected by link between surface and substance properties. There is very limited research work has been carried out 

on this phenomenon .SPD methods are basically extended from conventional metal working techniques and it is 

developed further for processing bulk materials. Now, this  technique is extended further  for some other drives such 

as efficient  compaction  of  powders,  principally for  creating  alloys  from  combined  elemental  powders 

[200],and swarf . Somehow, more new attractive applications were delivered . Production of architect ring and Nano 

structuring hybrid materials uses advanced SPD techniques. In particular, for producing a material in range of spiral 

architectures which is most helpful for strength and ductility uses twist extrusion HPT and some latest methods. This 

field will have an outstanding future for the manufacturing of innovative materials and creative process design.  
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