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ABSTRACT 

 
In this paper we will discuss a study of a special theory of two point linear differential operators on finite interval. 

This paper will be based on the theory of linear two point initial boundary values problem, the spectral theory of 

linear deferential operators and the connections between two fields. The primary interest in this work is not second 

order partially differential equation, such as the heat equation but third and higher odd order equations. Spectral 

Theory of ordinary and partially linear differential operators on finite interval, the initial problems for linear 

evolution equation with constant coefficient of any order is discussed. 
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1. INTRODUCTION 

The primary interest in this work is not second order partially differential equation, such as the heat equation, third 

and high odd order equation. For the case of second order partially differential equation these equations are fully 

resolved at least when the solution and the data both satisfy some differentiability condition. Indeed, Cauchy not 

only posed the problem but solved it for analytic data. Hadamard examined question in particular for second order 

problem. However when the partially differential equation is of a higher order the application of their techniques 

works only with very specific types of boundary conditions. Special attention is paid to the question of separated 

boundary conditions, spectral multiplicity and absolutely continuous spectrum. For the case nm=2 (Sturm-Liouville 

operators and Dirac systems) the classical theory of Weyl-Titchmarch is included. Oscillation theory for Sturm-

Liouville operators and Dirac systems is developed and applied to the study of the essential and absolutely 

continuous spectrum. The results are illustrated by the explicit solution of a number of particular problems including 

the spectral theory one partial Schrödinger and Dirac operators with spherically symmetric potentials. The methods 

of proof are functionally analytic wherever possible. 

2. BOUNDARY CONDITIONS 

 If each boundary condition has involves only a single order of spatial derivative (though possibly at both ends) 

then we call the boundary conditions non-Robin. Boundary conditions are non-Robin if each contains only one 

order of partial derivative. Otherwise we say that boundary condition is of Robin type. 

 Boundary conditions with the property every non-zero entry in the boundary coefficient matrix is a pivot are 

called simple. 

Example: The boundary conditions 
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qx(0,t)= qx(1,t) 

q(0,t)= q(1,t)=0 

may be expressed by specifying the boundary data h1 = h2 = h3 = 0 and boundary coefficient matrix 

 

Hence these boundary conditions are homogeneous and non-Robin but coupled. 

3. SPECTRAL THEORY OF DIFFERENTIAL OPERATORS 

The branch of the general spectral theory of operators in which one investigates the spectral properties of differential 

operators on various function spaces, especially on Hilbert spaces of measurable functions. 

Let  be a domain in , let  be its boundary, let 

 

(1) 

be a linear differential operator, and let 

 

(2) 

be the boundary conditions, defined by linear differential operators . 

Here 

 
 

 

the  are non-negative integers, , , and  and  are 

functions defined in  and on , respectively. Unless otherwise stated, in the sequel it is assumed 

that  and  are sufficiently smooth functions when , and that  for all , 

where  if . 

4. SPECTRAL THEORY 

Spectral theory for second order ordinary differential equations on a compact interval was developed by Jacques 

Charles François Sturm and Joseph Liouville in the nineteenth century and is now known as Sturm–Liouville theory. 

In modern language it is an application of the spectral theorem for compact operators due to David Hilbert. In his 

paper, published in 1910, Hermann Weyl extended this theory to second order ordinary differential equations 

with singularities at the endpoints of the interval, now allowed to be infinite or semi-infinite. He simultaneously 

developed a spectral theory adapted to these special operators and introduced boundary conditions in terms of his 

celebrated dichotomy between limit points and limit circles. 



Vol-3 Issue-5 2017  IJARIIE-ISSN(O)-2395-4396 

6725 www.ijariie.com 909 

In the 1920s John von Neumann established a general spectral theorem for unbounded self-adjoint operators, 

which Kunihiko Kodaira used to streamline Weyl's method. Kodaira also generalised Weyl's method to singular 

ordinary differential equations of even order and obtained a simple formula for the spectral measure. The same 

formula had also been obtained independently by E. C. Titchmarsh in 1946 (scientific communication 

between Japan and the United Kingdom had been interrupted by World War II). Titchmarsh had followed the 

method of the German mathematician Emil Hilb, who derived the eigenfunction expansions using complex function 

theory instead of operator theory. Other methods avoiding the spectral theorem were later developed independently 

by Levitan, Levinson and Yoshida, who used the fact that the resolvent of the singular differential operator could be 

approximated by compact resolvents corresponding to Sturm–Liouville problems for proper subintervals. Another 

method was found by Mark Grigoryevich Krein; his use of direction functionals was subsequently generalised 

by Izrail Glazman to arbitrary ordinary differential equations of even order. 

Weyl applied his theory to Carl Friedrich Gauss's hypergeometric differential equation, thus obtaining a far-reaching 

generalisation of the transform formula of Gustav Ferdinand Mehler (1881) for the Legendre differential equation, 

rediscovered by the Russian physicist Vladimir Fock in 1943, and usually called the Mehler–Fock transform. The 

corresponding ordinary differential operator is the radial part of the Laplacian operator on 2-dimensional hyperbolic 

space. More generally, the Plancherel theorem for SL(2,R) of Harish Chandraand Gelfand–Naimark can be deduced 

from Weyl's theory for the hypergeometric equation, as can the theory of spherical functions for the isometry 

groups of higher dimensional hyperbolic spaces. Harish Chandra's later development of the Plancherel theorem for 

general real semisimple Lie groups was strongly influenced by the methods Weyl developed for eigenfunction 

expansions associated with singular ordinary differential equations. Equally importantly the theory also laid the 

mathematical foundations for the analysis of the Schrödinger equation and scattering matrix in quantum mechanics. 

5. SPECIAL THEORY OF TWO POINT LINEAR DIFFERENTIAL OPERATORS 

The spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination 

of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his 

paper Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second 

order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. 

Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also 

contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with 

respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified 

form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral 

theorem. It has had important applications in quantum mechanics, operator theory and harmonic 

analysis on semisimple Lie groups. Spectral theory for second order ordinary differential equations on a compact 

interval was developed by Jacques Charles François Sturm and Joseph Liouville in the nineteenth century and is 

now known as Sturm–Liouville theory. In modern language it is an application of the spectral theorem for compact 

operators due to David Hilbert. In his paper, published in 1910, Hermann Weyl extended this theory to second order 

ordinary differential equations with singularities at the endpoints of the interval, now allowed to be infinite or semi-

infinite. He simultaneously developed a spectral theory adapted to these special operators and introduced boundary 

conditions in terms of his celebrated dichotomy between limit points and limit circles. 

In the 1920s John von Neumann established a general spectral theorem for unbounded self-adjoint operators, 

which Kunihiko Kodaira used to streamline Weyl's method. Kodaira also generalised Weyl's method to singular 

ordinary differential equations of even order and obtained a simple formula for the spectral measure. The same 

formula had also been obtained independently by E. C. Titchmarsh in 1946 (scientific communication 

between Japan and the United Kingdom had been interrupted by World War II). Titchmarsh had followed the 

method of the German mathematician Emil Hilb, who derived the eigenfunction expansions using complex function 

theory instead of operator theory. Other methods avoiding the spectral theorem were later developed independently 

by Levitan, Levinson and Yoshida, who used the fact that the resolvent of the singular differential operator could be 

approximated by compact resolvents corresponding to Sturm–Liouville problems for proper subintervals. Another 

method was found by Mark Grigoryevich Krein; his use of direction functionals was subsequently generalised 

by Izrail Glazman to arbitrary ordinary differential equations of even order. 

Weyl applied his theory to Carl Friedrich Gauss's hypergeometric differential equation, thus obtaining a far-reaching 

generalisation of the transform formula of Gustav Ferdinand Mehler (1881) for the Legendre differential equation, 

rediscovered by the Russian physicist Vladimir Fock in 1943, and usually called the Mehler–Fock transform. The 

corresponding ordinary differential operator is the radial part of the Laplacian operator on 2-dimensional hyperbolic 
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space. More generally, the Plancherel theorem for SL(2,R) of Harish Chandraand Gelfand–Naimark can be deduced 

from Weyl's theory for the hypergeometric equation, as can the theory of spherical functions for the isometry 

groups of higher dimensional hyperbolic spaces. Harish Chandra's later development of the Plancherel theorem for 

general real semisimple Lie groups was strongly influenced by the methods Weyl developed for eigenfunction 

expansions associated with singular ordinary differential equations. Equally importantly the theory also laid the 

mathematical foundations for the analysis of the Schrödinger equation and scattering matrix in quantum mechanics. 

6. CONCLUSION 

In this paper we are discussing only some important point of special theory of two point linear differential operators 

on finite interval. Many authors discussed in this topic. Spectral theory for second order ordinary differential 

equations on a compact interval was developed by Jacques Charles François Sturm and Joseph Liouville in the 

nineteenth century and is now known as Sturm–Liouville theory. The primary interest in this work is not second 

order partially differential equation, such as the heat equation but third and higher odd order equations. The theory 

was put in its final simplified form for singular differential equations of even degree by Kodaira and others, 

using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator 

theory and harmonic analysis on semisimple Lie groups. 
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