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ABSTRACT 

 
In this paper we are discussing a Study of Certain Topological Spaces through Ideals.  Being so general, 

topological spaces are a central unifying notion and appear in virtually every branch of modern mathematics. The 

branch of mathematics that studies topological spaces in their own right is called point-set topology or general 

topology. 
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1. INTRODUCTION 

In topology and related branches of mathematics, a topological space may be defined as a set of points, along with a 

set of neighborhoods for each point, satisfying a set of axioms relating points and neighborhoods. The definition of a 

topological space relies only upon set theory and is the most general notion of a mathematical space that allows for 

the definition of concepts such as continuity, connectedness, and convergence.[1] Other spaces, such 

as manifolds and metric spaces, are specializations of topological spaces with extra structures or constraints. Being 

so general, topological spaces are a central unifying notion and appear in virtually every branch of modern 

mathematics. The branch of mathematics that studies topological spaces in their own right is called point-set 

topology or general topology. 

The concept of ideals in general topological spaces is found in the classic text by Kuratowski [4] and also in [11]. A 

collection I ⊆ P(X) is called an ideal on X if it satisfies the following two conditions: (i) A ∈ I and A ⊇ B ⇒ B ∈ I, 

and (ii) A ∈ I , B ∈ I ⇒ A S B ∈ I. A topological space (X, τ ) with an ideal I on X is denoted by (X, τ, I), called an 

ideal topological space. For a subset A of X, an operator (.) ∗ : P(X) → P(X) (where P(X) denotes the power set of 

X), called a local function[4] of A and denoted by A∗ (I, τ ) or simply A∗ , is defined by the set {x ∈ X : U T A 6∈ I 

for every U ∈ τ (x)}, where τ (x) = {U ∈ τ : x ∈ U}. In [3,4], it was also shown that the operator cl∗ (.), defined by 

cl∗ (A) = A S A∗ , is a Kuratowski closure operator and hence generates a topology τ ∗ (I) or simply τ ∗ on X, called 

∗-topology, finer than τ . The members of τ ∗ are called τ ∗ -open or simply ∗-open sets and the complement of a ∗-

open set is called a ∗-closed set or equivalently, a subset A of X is called ∗-closed if A∗ ⊆ A. For a subset A of 

topological space (X, τ ), H. Maki [6] introduced the following notations: A∧ = T {U : A ⊆ U and U is open } and 

A∨ = S {F : F ⊆ A and F is closed }. A subset A of X is said to be a ∧-set (∨-set) if A = A∧ (resp. A = A∨ ). A 

subset A of X is said to be g-closed [5] if cl(A) ⊆ U whenever A ⊆ U and U is open in X; and the complement of a 

g-closed subset in X is called a g-open set in X. For further details regarding g-closed sets and similar such sets one 

may refer to [8–10]. A subset A of an ideal space (X, τ, I) is said to be ∗-g-closed [7] if cl(A) ⊆ U whenever A ⊆ U 

and U is ∗-open. A subset A of X is said to be ∗-g-open if X \ A is ∗-g-closed. It was shown in [7] that the the class 

of ∗-g-closed sets lies strictly between the class of closed sets and the class of g-closed sets. It was also shown in the 

same paper that the class of g-closed sets in (X, τ ) is not same as that of ∗-g-closed sets in an ideal topological space 

(X, τ, I) 

Theorem. Let (X, τ, I) be an ideal topological space and A ⊆ X. If A∧ ∗
 
is ∗-g-closed then A is ∗-g-closed. Proof.  

Let A∧ ∗ be ∗-g-closed. Suppose that A ⊆ U, where U is ∗-open. Then A∧ ∗ ⊆ U. Now A∧ ∗ is ∗-g-closed ⇒ cl(A∧ ∗ 

) ⊆ U ⇒ cl(A) ⊆ cl(A∧ ∗ ) ⊆ U ⇒ A is a ∗-g-closed set. 
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2. ∗-T1/2 –SPACES 

 Dunham [2] defined a kind of separation axiom viz. T 1/2 -property in a topological space. It is shown in [2] that the 

class of T 1 2 -spaces lies between the classes of T0-spaces and T1-spaces. The intent of this section is to introduce a 

similar type of separation axiom, termed ∗-T 1/2 -property which is strictly stronger than T 1/2 -property, but is 

weaker than the T1-axiom. Such a separation axiom is characterized here in terms of the types of sets introduced in 

earlier sections. We begin by recalling the definition of T 1/2 -spaces as given in [2] 

 

Definition.  

A topological space (X, τ ) is said to be a T 1 /2 -space if every g-closed set is closed in X. Our proposed definition of 

∗-T 1/2 -spaces goes as follows.  

 

Definition. An ideal topological space (X, τ, I) is said to be a ∗-T 1/2 -space if every ∗-g-closed set is closed in X. 

This axiomatization is due to Felix Hausdorff. Let X be a set; the elements of X are usually called points, though 

they can be any mathematical object. We allow X to be empty. Let N be a function assigning to each x (point) in X a 

non-empty collection N(x) of subsets of X. The elements of N(x) will be called neighbourhoods of x with respect 

to N (or, simply, neighbourhoods of x). The function N is called a neighbourhood topology if 

the axioms below[6] are satisfied; and then X with N is called a topological space. 

If N is a neighbourhood of x (i.e., N ∈ N(x)), then x ∈ N. In other words, each point belongs to every one of its 

neighbourhoods. 

If N is a subset of X and includes a neighbourhood of x, then N is a neighbourhood of x. I.e., every superset of a 

neighbourhood of a point x in X is again a neighbourhood of x. 

The intersection of two neighbourhoods of x is a neighbourhood of x. 

Any neighbourhood N of x includes a neighbourhood M of x such that N is a neighbourhood of each point of M. 

The first three axioms for neighbourhoods have a clear meaning. The fourth axiom has a very important use in the 

structure of the theory, that of linking together the neighbourhoods of different points of X. 

A standard example of such a system of neighbourhoods is for the real line R, where a subset N of R is defined to be 

a neighbourhood of a real number x if it includes an open interval containing x. 

Given such a structure, a subset U of X is defined to be open if U is a neighbourhood of all points in U. The open 

sets then satisfy the axioms given below. Conversely, when given the open sets of a topological space, the 

neighbourhoods satisfying the above axioms can be recovered by defining N to be a neighbourhood 

of x if N includes an open set U such that x ∈ U.[7] 

 

3. Examples 
1. Given X = {1, 2, 3, 4}, the collection τ = {{}, {1, 2, 3, 4}} of only the two subsets of X required by the 

axioms forms a topology of X, the trivial topology (indiscrete topology). 

2. Given X = {1, 2, 3, 4}, the collection τ = {{}, {2}, {1, 2}, {2, 3}, {1, 2, 3}, {1, 2, 3, 4}} of six subsets 

of X forms another topology of X. 

3. Given X = {1, 2, 3, 4} and the collection τ = P(X) (the power set of X), (X, τ) is a topological space. τ is 

called the discrete topology. 

4. Given X = Z, the set of integers, the collection τ of all finite subsets of the integers plus Z itself is not a 

topology, because (for example) the union of all finite sets not containing zero is infinite but is not all of Z, 

and so is not in τ. 

 

4. EXAMPLES OF TOPOLOGICAL SPACES 
A given set may have many different topologies. If a set is given a different topology, it is viewed as a different 

topological space. Any set can be given the discrete topology in which every subset is open. The only convergent 

sequences or nets in this topology are those that are eventually constant. Also, any set can be given the trivial 

topology (also called the indiscrete topology), in which only the empty set and the whole space are open. Every 

sequence and net in this topology converges to every point of the space. This example shows that in general 

topological spaces, limits of sequences need not be unique. However, often topological spaces must be Hausdorff 

spaces where limit points are unique. 
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5. METRIC SPACES 
Metric spaces embody a metric, a precise notion of distance between points. 

Every metric space can be given a metric topology, in which the basic open sets are open balls defined by the metric. 

This is the standard topology on any normed vector space. On a finite-dimensional vector space this topology is the 

same for all norms. 

There are many ways of defining a topology on R, the set of real numbers. The standard topology on R is generated 

by the open intervals. The set of all open intervals forms a base or basis for the topology, meaning that every open 

set is a union of some collection of sets from the base. In particular, this means that a set is open if there exists an 

open interval of non zero radius about every point in the set. More generally, the Euclidean spaces Rn can be given a 

topology. In the usual topology on Rn the basic open sets are the open balls. Similarly, C, the set of complex 

numbers, and Cn have a standard topology in which the basic open sets are open balls. 

 

 

7. CONNECTED IDEAL TOPOLOGICAL SPACES 
In this section, we introduce the definitions of τ ∗ -separated sets, τ ∗ -connected sets in terms of cl∗ which is 

different from cl in general topology as cl∗ (A) = A ∪ A∗ and A∗ is superset of Ad ∗ i.e. derived set of A in τ ∗ -

topology.  

Definition 1. Let (X, τ, I) be an ideal topological space. Nonempty subsets A, B of X are called τ ∗ -separated if cl∗ 

(A) ∩ B = φ = A ∩ cl∗ (B).  

 

Definition  2. Let (X, τ, I) be an ideal topological space. A space X is said to be τ ∗ -connected if X cannot be 

expressed as the disjoint union of two nonempty τ ∗ -open sets. Otherwise X is called τ ∗ -disconnected, equivalently 

X is τ ∗ -disconnected if X = A ∪ B, where cl∗ (A) ∩ B = φ = A ∩ cl∗ (B). If I = φ, then τ ∗ -connected and 

connected coincide.  

 

Remark. From definitions 1 and 2, we have the following implications, but none of the implications is reversible as 

shown in example 1. Separated ⇒ ∗-separated ⇒ τ ∗ -separated, τ ∗ -connected ⇒ ∗-connected ⇒ connected. 

 

Theorem. Let (X, τ, I) be an ideal topological space. If A and B are non empty disjoint τ ∗ -open sets, then A and B 

are τ ∗ -separated.  

 

Proof. Let A ∩ B = φ therefore A ⊂ X − B implies cl∗ (A) ⊂ cl∗ (X − B) = X−B implies cl∗ (A)∩B = φ. Also B ⊂ 

X−A and cl∗ (B) ⊂ cl∗ (X−A) = X−A implies cl∗ (B) ∩ A = φ. Hence the proof 

 

Example 1. Let X = {a, b, c, d} with topology τ = {φ, X, {a}, {c}, {a, c}, {a, b, d}} and I = {φ, {a}}. Let A = {b, d} 

we have A∗ = {b, d}, cl∗ (A) = {b, d}, cl(A) = {b, d} and for B = {a, c} we have B∗ = {c}, cl∗ (B) = {a, c}, cl(B) = 

X. X is τ ∗ -separated but neither ∗-separated nor separated. Also (X, τ ) is connected but neither ∗-connected nor τ ∗ 

-connected. 

 

 

6. CONCLUSION 
The relationship of certain objects that are inactive under a certain type of change, especially those properties that 

are immutable under a certain type of equivalent, and it is the study of those properties of geometric configurations 

that are one-to-one of these configurations. Remain unchanged when there is one. Bisexual transformations or 

homomorphisms. Topology operates with more general concepts than analysis. The differential properties of a given 

transformation are ineffective for topology, but bicopturity is necessary. As a result, the topology is often suitable 

for the resolution of problems, for which analysis cannot respond. 

Although the concept of topology has been recognized as a difficult area in mathematics, we have taken it as a 

challenge and cherished this research study. Ideal topology is 

Generalization of topology in classical mathematics, but also has its own distinct characteristics. It can further 

enhance the understanding of the basic structure of classical mathematics and provides new methods and results to 

achieve important results of classical mathematics. Apart from this it is also in some important areas of science and 

technology 
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