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ABSTRACT 

Differential equations can describe nearly all systems undergoing change. Many mathematicians have studied the 

nature of these equations for hundreds of years and there are many well-developed solution techniques. Often, 

systems described by differential equations are so complex, or the systems that they describe are so large, that a 

purely analytical solution to the equations is not tractable. It is in these complex systems where computer 

simulations and numerical methods are useful. Traditional methods for solving the boundary value problems of 

elasticity and thermo elasticity are orientated towards usage of harmonic and biharmonic functions for stresses or 

displacements. Also, most of the existing methods are aimed at and adjusted to special loadings and forms of the 

region, and by far do not provide solutions in the form of a functional dependence of the stresses or displacements 

on the loading factors.  

Keywords: Numerical Method, Solution, Differential Integration Equations, solution techniques, simulations 

methods. 

 

1. INTRODUCTION 

We have developed an analytical method for direct integration of the differential equilibrium and compatibility 

equations in terms of stresses, which does not make any use of auxiliary functions. The method was proposed by 

Prof. Vihak (Vigak) [2−6]. It is based on integration of the model equations, determination of relations between the 

stress components, and selection of the so-called key stresses. Consequently, the governing integro-differenttial 

equations are derived for the key stresses. To solve them, we propose a method for separation of variables. After 

determination of stresses, the displacements are found by integration of the Cauchy relations. Applying the method, 

we have already solved some problems; see Vihak et al. [1–11] for the details. This paper presents the solutions for a 

plane elasticity problem in a rectangle and the three-dimensional thermo elasticity problems in a half-space and an 

infinite layer. 

2. SOLUTION FOR A PLANE PROBLEM OF ELASTICITY IN A RECTANGLE  

Consider a plane elasticity problem in a rectangle D = {x ∈[−a,a], y ∈[−b,b]} . In the absence of body forces, the 

problem is governed by [12] the equilibrium equations 
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and the compatibility equation 

 

under the imposed tractions on the boundary: 

 

 

Laplace differential operator in dimensionless Cartesian coordinates system x, y. The tractions (3) should satisfy the 

general static conditions in integral form 

 

Our solution strategy for problem (1)–(3) is the following:  

• Select one key stress out of the three stress components and derive a governing equation for it.  

• Equivalently replace the boundary conditions for separate stresses (3) by the conditions for a key stress only.  

• Based on the form of the governing equation, construct a complete set of functions and use them to represent the 

key stress by convergent series.  



Vol-4 Issue-1 2018              IJARIIE-ISSN(O)-2395-4396 
  

12793 www.ijariie.com 1082 

• Calculate other stress tensor components. 

We demonstrate our approach for the selected stress σy as a key one. Besides boundary conditions (3) for σxy at 

sides y = ±b , the key stress σy should satisfy the following boundary conditions: 

 

which follow from validness of Eqs (1) at y = ±b and the last Eq (3). Integration of the equilibrium equations yields 

the expressions for other two stresses in terms of the key stress; see Vihak et al. [11]: 

 

Here, 

 

In addition, the following integral conditions are valid: 

 

The governing equation for σy follows from Eqs (1), (2), and second Eq (5): 
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We have proved that solving the original elasticity problem (1)–(3) is equivalent to solving Eq (7), under conditions 

(4)–(6). After separation of variables in Eq (7), we can find the key stress in the form of a decomposition by the 

complete orthogonal set of eigen- and associated functions 

 

 

The associated functions {1, y } and {1, x } indicate the elementary solutions 

 

in Eqs (8) and (5), which correspond to the resultant vector and moment, i.e., they depend on their non-self-

equilibrated constituents. We have found these functions in a closed form [1] and performed their detailed analysis 

[7]. The self-equilibrated constituents of the stresses, which are specified by the eigen-functions, depend on the self-

equilibrated tractions, satisfying the homogeneous integral equilibrium conditions thereby. We have computed these 

functions by means of an iterative algorithm; see Vihak et al. [3] for the details. 
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3. SOLUTION FOR A 3D PROBLEM OF THERMO ELASTICITY IN A HALF-SPACE 

AND AN INFINITE LAYER  

Vihak demonstrated [10] for three-dimensional problems of mechanics that there are only three compatibility 

equations in terms of strains–not six, as it was believed before. They naturally coincide with three separate Saint-

Venant’s compatibility equations, depending on which three of the six Cauchy relations have been selected as the 

governing ones for calculating the displacements. On the basis of the three compatibility equations in terms of 

strains, the corresponding equations in terms of stresses can be written down. On a par with the equilibrium 

equations, they constitute a complete set of equations in terms of stresses for three-dimensional elasticity and thermo 

elasticity problems. 

The three-dimensional thermo-stressed state in a half-space or a layer 

 is governed by the equilibrium equations 

 

 

where,  are the stresses and strains, are the displacements, T is a 

prescribed temperature field, E and ν denote the Young’s modulus and Poisson’s ratio, G and α denote the shear 

modulus and coefficient of thermal expansion. We have 15 Eqs (10)–(12) for 15 unknowns – 6 stresses, 6 strains, 

and 3 displacements, – complemented by the boundary conditions 
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for a half-space and a layer, respectively. All the field variables should vanish at  

To solve the problems (10)–(13); (10)–(12), (14) in terms of stresses, one should eliminate the strains and 

displacements. We calculate the displacements by the first three Eqs (11), to result in the first three Beltrami 

equations 

 

 

Therefore, we arrive at a closed set of six Eqs (10) and (15) for six stresses. Summing up equations (15) yields  

 

Using the third Eq (10), we equivalently replace the boundary conditions (13)–(14) for shear stresses by those for 

derivatives of the normal stress: 
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We have solved the formulated problems (15), (16), (13), (17) for a half-space and (15), (16), (14), (18) for a layer, 

by applying a two-dimensional Fourier transform by x and y . The details are documented by Vihak et al. in [8, 9]. 

4. CONCLUSIONS  

In this paper, by applying the proposed method of direct integration, we have derived an analytical solution of the 

plane elasticity problem in a rectangle. The solution is the sum of the self-equilibrated and elementary constituents. 

The elementary parts correspond to tension and bending. The self-equilibrated parts have an essential influence only 

close to the boundary, tending to zero when moving away from it. Also, we have solved the three-dimensional 

thermo elasticity problems in a half-space and a layer. The solutions in terms of stresses are constructed by direct 

consecutive integration of the governing second-order differential equations for the key stresses, without traditional 

use of intermediate functions. 
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