A Secured Authorized Deduplication of Data in a Hybrid Cloud

Harshit Sharma¹, Sanket Khamkar², Kunal Kinholkar³, Akshay Tambat⁴

^{1,2,3,4} BE Scholar, Department of Computer Engineering, D Y Patil College of Engineering, Akurdi, Pune, MH, India

ABSTRACT

In personal computing devices that rely on a cloud storage environment for data backup, an imminent challenge facing source deduplication for cloud backup services is the low deduplication efficiency due to a combination of the resource intensive nature and the limited system resources. Data deduplication is one of important data compression techniques for eliminating duplicate copies of repeating data, and has been widely used in cloud storage to reduce the amount of storage space and save bandwidth. To protect the confidentiality of sensitive data while supporting deduplication, the convergent encryption technique has been proposed to encrypt the data before outsourcing. To better protect data security, this paper makes an attempt to formally address the problem of authorized data deduplication. Different from traditional deduplication systems, the differential privileges of users are further considered in duplicate check besides the data itself. We also present several new deduplication constructions supporting authorized duplicate check in hybrid cloud architecture. Security analysis demonstrates that our scheme is secure in terms of the definitions specified in the proposed security model. As a proof of concept, we implement a prototype of our proposed authorized duplicate check scheme and conduct tested experiments using our prototype. We show that our proposed authorized duplicate check scheme incurs minimal overhead compared to normal operations.

Keywords: - Data deduplication, Convergent encryption, Confidentiality, Hybrid cloud, Authorized Duplicate check.

1. Introduction

Cloud computing provides apparently unlimited virtualized resources to users as services across the entire web, whereas activity platform and implementation details. Today's cloud service suppliers provide each extremely offered storage and massively parallel computing resources at comparatively low prices. As cloud computing becomes prevailing, associate degree increasing quantity of knowledge is being hold on within the cloud and shared by users with specified privileges, that outline the access rights of the hold on information. One important challenge of cloud storage services is that the management of the ever-increasing volume of knowledge to form information management scalable in cloud computing, deduplication has been a well-known technique and has attracted a lot of attention recently. Information deduplication may be a specialized information compression technique for eliminating duplicate copies of continuance information transfers to scale back the amount of bytes that has to be sent. Rather than keeping multiple information copies with a similar content, deduplication eliminates redundant information thereto copy. Deduplication will occur at either the file level or the block level. For file level deduplication, it eliminates duplicate copies of a similar file. Deduplication also can occur at the block level that eliminates duplicate blocks of knowledge that occur in non-identical files.

Cloud computing is associate degree rising service model that has computation and storage resources on the web. One enticing practicality that cloud computing offers is cloud storage. People and enterprises area unit usually needed to remotely archive their information to avoid any data loss just in case there are a unit any hardware/software failures or unforeseen disasters. Rather than getting, the required storage media to stay information backups, people and enterprises will merely source their information backup services to the cloud service suppliers, which offer the mandatory storage resources to host the info backups whereas cloud storage is

enticing, a way to offer security guarantees for outsourced information becomes a rising concern. One major security challenge is to supply the property of assured deletion, i.e., information files area unit for good inaccessible upon requests of deletion. Keeping information backups for good is undesirable, as sensitive data could also be exposed within the future attributable to information breach or inaccurate management of cloud operators.

1.1 Background

Current data de-duplication frameworks, the personal cloud area unit enclosed as a mediator to allow data proprietor/clients to perform soundly copy talk over with differential edges. Such style is practical and has force in a lot of thought from specialists. The data proprietors simply source their information reposting by exploitation open cloud whereas the data operation overseen privately cloud. We have a tendency to show a propelled commit to bolster additional grounded security by scrambling the document with differential profit keys. On these lines, the purchasers while not comparison edges cannot perform the copy check. Moreover, such unapproved purchasers cannot decipher the figure message even connive with the S-CSP.

1.2 Cloud Computing

Cloud computing refers to applications and services that run on a distributed network victimization virtualized resources and accessed by common net protocols and networking standards. It is distinguished by the notion that resources area unit virtual and limitless, which details of the physical systems on that software package runs area unit abstracted from the user. Cloud computing takes the technology, services, and applications that area unit kind of like those on the net and turns them into a self-service utility.

1.2 Deployment Models

A preparation model defines the aim of the cloud and the nature of however the cloud is found. The National Institute of Standards and Technology definition for the four preparation models is as follows:

Public cloud: The general public cloud infrastructure is offered for public use or else for an outsized business cluster and is owned by a company commercialism cloud services.

Private cloud: The personal cloud infrastructure is operated for the exclusive use of a company. The cloud could also be managed by that organization or a third party. Personal clouds could also be either on- or off-premises.

Hybrid cloud: A hybrid cloud combines multiple clouds (private, community of public) wherever those clouds retain their distinctive identities, however area unit sure along as a unit. A hybrid cloud might provide standardized or proprietary access to knowledge and applications, still as application immovableness.

Community cloud: A community cloud is one wherever the cloud has been organized to serve a standard operate or purpose.

It may be for one organization or for many organizations; however they share common issues like their mission, policies, security, regulative compliance desires, and so on. A community cloud could also be managed by the constituent organization(s) or by a third party.

1.2 Architecture of Cloud Computing

The goal of cloud computing is to use ancient supercomputing, or high- performance computing power, usually employed by military and analysis facilities, to perform tens of trillions of computations per second, in consumeroriented applications like money portfolios, to deliver customized data, to supply information storage or to power giant, immersive on-line laptop games.

Chart -1: Cloud Architecture

To do this, cloud computing uses networks of large groups of servers typically running low-cost consumer PC technology with specialized connections to spread data-processing chores across them. This shared IT infrastructure contains large pools of systems that linked together. Often, virtualization techniques are used to maximize the power of cloud computing.

2. Comparison

Sr.	Title	Conference	Publication	Topic Reviewed
No.			Year	
1.	Fast and secure laptop	LISA'10 Proceedings	2010	This paper describes an algorithm,
	backups with encrypted de-	of the 24th		which takes advantage of the data,
	duplication.	international		which is common between users to
		conference on Large		increase the speed of backups, and
		installation system		reduce the storage requirements. This
		administration		algorithm supports client-end per-user
				encryption, which is necessary for
				confidential personal data.

2.	Cloud-Assisted Mobile-	IEEE JOURNAL OF	MARCH	This paper build privacy into mobile
	Access of Health Data	BIOMEDICAL AND	2014	healthcare systems with the help of the
	With Privacy and	HEALTH		private cloud. This system offers
	Auditability	INFORMATICS		salient features including efficient key
	1 10 01 00 01 00 0			management privacy-preserving data
				storage and retriaval especially for
				ratrioval at amargancias and
				auditability for misusing health data
				Author manages to integrate lass
				Author propose to integrate key
				management from pseudo random
				number generator for unlink ability, a
				secure indexing method for privacy
				preserving keyword search which
				hides both search and access patterns
				based on redundancy, and integrate the
				concept of attribute based encryption
				with threshold signing for providing
				role-based access control with
				auditability to prevent potential
				misbehavior, in both normal and
				emergency cases.
3.	Private Data Deduplication	Proceedings of the	2012	Private data deduplication protocol, a
	Protocols in Cloud Storage	27th Annual ACM		deduplication technique for private
		Symposium on		data storage is introduced and
		Applied Computing		formalized. A private data
				deduplication protocol allows a client
				who holds a private data proves to a
				server who holds a summary string of
				the data that he/she is the owner of
				that data without revealing further
				information to the serve.
4.	Security proofs for	International	MAY 2004	These is a framework that on the one
	identity-based	Conference on the		hand helps explain how these schemes
	identification and signature	Theory and		are derived and on the other hand
	schemes	Applications of		enables modular security analyses,
		Cryptographic		thereby helping to understand,
_		Techniques		simplify, and unify previous work.
5.	A reverse deduplication	Proceedings of the	2013	It introduces fragmentation that
	storage system optimized	4th Asia-Pacific		degrades read performance.
	for reads to latest backups	Workshop on		RevDedup, a deduplication system
	IEEE TRANSACTIONS	Systems		that optimizes reads to the latest
	ON PARALLEL AND			backups of virtual machine (VM)
	DISTRIBUTED S			images using reverse deduplication. In
				contrast with conventional
				deduplication that removes duplicates
				from new data, RevDedup removes
				duplicates from old data, thereby
				shifting fragmentation to old data
				while keeping the layout of new data
				as sequential as possible.

6.	Secure deduplication with	IEEE	JUNE 2014	It introduce a baseline approach in
	efficient and reliable	TRANSACTIONS		which each user holds an independent
	convergent key	ON PARALLEL		master key for encrypting the
	management	AND		convergent keys and outsourcing them
		DISTRIBUTED		to the cloud. Baseline key
		SYSTEMS		management scheme generates an
				enormous number of keys with the
				increasing number of users and
				requires users to dedicatedly protect
				the master keys. This paper propose
				Dekey, a new construction in which
				users do not need to manage any keys
				on their own but instead securely
				distribute the convergent key shares
				across multiple servers. Dekey incurs
				limited overhead in realistic
-		T	NOVADALA	environments.
1.	A Review on Cloud	International Journal	NOV 2014	Files are re-uploaded into server that
	Storage Performance to	Di Engineering		the server workload. So to remove the
	Efficiency	Technology		redundant or duplicate copies De
	Linelency	reennology		Duplication technique is used in cloud
				storage. To optimize the transmission
				node performance the Index Name
				Server (INS) architecture is used.
				Beside from this file compression,
				chunk matching, real time feedback
				control and load balancing techniques
				are also discussed. Using these
				techniques the cloud storage
				performance increases also the storage
				workload is reduced.
8.	Decentralized Access	International Journal	2014	The cloud verifies the authenticity of
	Control with Anonymous	of Inventions in		the server without knowing the user's
	Authentication of Data	Computer Science		identity before storing data. Author
	Stored in Clouds.	and Engineering		added feature of access control in
	International Journal of			which only valid users are able to
	Inventions in Computer			decrypt the stored information. The
	Science			scheme prevents replay attacks and
	and Engineering			supports creation, modification, and
				address user revocation
				Authentication and access control
				scheme is decentralized and robust
				unlike other access control schemes
				designed for clouds, which are
				centralized. The communication.
				computation, and storage overheads
				are comparable to centralized
				approaches.

9.	Privacy-Preserving Multi-	IEEE INFOCOM	2011	Sensitive data has to be encrypted
	keyword Ranked Search			before outsourcing, which obsoletes
	over Encrypted Cloud Data			traditional data utilization based on
	51			plaintext keyword search. Related
				works on searchable encryption focus
				on single keyword search or Boolean
				keyword search, and rarely
				differentiate the search results. The
				efficient principle of "coordinate
				matching", i.e., as many matches as
				possible, to capture the similarity
				between search query and data
				documents, and further use "inner
				product similarity" to quantitatively
				formalize such principle for similarity
				measurement.
10.	A Secure Client Side	IEEE	2014	Security and privacy are among top
	Deduplication Scheme in	TRANSACTIONS		concerns for the public cloud
	Cloud Storage	ON PARALLEL		environments. Towards these security
	Environments	AND		challenges, we propose and
		DISTRIBUTED		implement, on Open Stack Swift, a
		SYSTEMS		new client-side deduplication scheme
				for securely storing and sharing
				outsourced data via the public cloud.
				First, it ensures better confidentiality
				towards unauthorized users. Second,
				by integrating access rights in
				metadata file, an authorized user can
1				
				decipher an encrypted file only with

 Table -1: Literature Survey

4. CONCLUSION

In this paper, the notion of licensed knowledge deduplication projected to shield the info security by together with differential privileges of users within the duplicate check. We also presented many new deduplication constructions supporting authorized duplicate sign up hybrid cloud design, in which the duplicate-check tokens of files area unit generated by the personal cloud server with personal keys. Security analysis demonstrates that our schemes area unit secure in terms of insider and outsider attacks per the projected security model. As a signal of construct, we tend to enforce an image of our projected licensed duplicate check theme and conduct test bed experiments on our image. We showed that our licensed duplicate check theme incurs minimal overhead compared to focus coding and network transfer.

5. REFERENCES

[1]. Jin Li, Yan Kit Li, Xiaofeng Chen, Patrick P. C. Lee, Wenjing Lou A Hybrid Cloud Approach for Secure Authorized Deduplication IEEE Transactions on Parallel and Distributed Systems: PP Year 2016

[2]. Mr Vinod B Jadhav Prof Vinod S Wadne Secured Authorized Deduplication Based Hybrid Cloud Approach International Journal of Advanced Research in Computer Science and Software Engineering [3]. Abdul Samadhu, J. Rambabu, R. Pradeep Kumar, R. Santhya Detailed Investigation on a Hybrid Cloud Approach for Secure Authorized Deduplication International Journal for Research in Applied Science and Engineering Technology (IJRASET)

[4]. Jadapalli Nandini, Rami reddy Navateja Reddy Implementation Deduplication System with Authorized Users International Research Journal of Engineering and Technology (IRJET)

[5]. Sharma Bharat, Mandre B.R. A Secured and Authorized Data Deduplication with Public Auditing International Journal of Computer Applications (09758887)

[6]. Wee Keong Ng SCE, NTU Yonggang Wen SCE, NTU Huafei Zhu Private Data Deduplication Protocols in Cloud Storage SAC12 March 2529, 2012, Riva del Garda, Italy. Copyright 2011 ACM 9781450308571/12/03
[7]. Shweta D. Pochhi, Prof. Pradnya V. Kasture Encrypted Data Storage with Deduplication Approach on Twin Cloud International Journal of Innovative Research in Computer and Communication Engineering

[8]. Backialakshmi. N Manikandan. M SECURED AUTHORIZED DEDUPLICATION IN DISTRIBUTED SYSTEM IJIRST International Journal for Innovative Research in Science and Technology Volume 1 Issue 9 February 2015

[9]. Bhushan Choudhary, Amit Dravid A Study On Secure Deduplication Techniques In Cloud Computing International Journal of Advanced Research in Computer Engineering and Technology (IJARCET) Volume 3, Issue 12, April 2014

[10]. James S. Plank Lihao Xu Optimizing Cauchy Reed-Solomon Codes for Fault-Tolerant Network Storage Applications The 5th IEEE International Symposium on Network Computing and Applications (IEEE NCA06), Cambridge, MA, July, 2006.

