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Abstract 

In this paper, we present a new two-parameter family of iterative methods for solving nonlinear 

equations which includes, as a particular case, the classical Potra and Pta´k third-order method. Per 

iteration the new methods require two evaluations of the function and one evaluation of its first 

derivative. It is shown that each family member is cubically convergent. Several examples are given to 

illustrate the performnce of the family members.

 

1. Introduction 

We consider iterative methods to find a simple root 𝛼, i.e.    0 0f and f   of a nonlinear 

equation   0f x   that uses f and f   but not the higher derivatives of f . 

The best known iterative method for the calculation of 𝛼 is Newton’s method defined by 
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where 0x  is an initial approximation sufficiently close to 𝛼 . This method is quadratically convergent 

[1]. There exists a modification of Newton’s method with third-order convergence due to Potra 

and Pta´k [2] 

               
      

 
 1

/
, 2

n n n n

n n

n

f x f x f x f x
x x

f x


  
 


 



Vol-5 Issue-4 2019        IJARIIE-ISSN(O)-2395-4396 

10580 www.ijariie.com 136 

Some Newton-type methods with third-order convergence that do not require the computation of 

second derivatives have been developed [3–12]. To obtain some of those iterative methods the Adomian 

decomposi. tion method was applied in [3,4], He’s homotopy perturbation method [5,6] and Liao’s 

homotopy analysis 

method [7]. Some of the other methods have been derived by considering different quadrature formulas for 

the computation of the integral arising from Newton’s theorem: 

                        3
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Weerakoon and Fernando [8] applied the rectangular and trapezoidal rules to the integral of (3) to 

rederive the Newton method and arrive at the cubically convergent method 
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while Frontini and Sormani [9] obtained the cubically convergent method 
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by considering the midpoint rule. 

In [10], Homeier derived the following cubically convergent iteration scheme: 
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by considering Newton’s theorem for the inverse function  x f y  instead of  y f x . 

Recently, Kou et al. in [11] considered Newton’s theorem on a new interval of integration and arrived at 

the following cubically convergent iterative scheme 
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The aforementioned methods require three functional evaluations of the given function and its first 

derivative, but no evaluations of the second or higher derivatives. Finding the iterative methods with 

third-order converb gence, not requiring the computation of second derivatives is important and 

interesting from the practical point of view and becomes active now. 

In this paper, we present a new two-parameter family of modified Newton’s methods that does not require 

the computation of second-order derivatives of the function. Derivation of the family is based on 

finding a correction term for the second substep in the two-substep Newton method, which will be 

described in the folc lowing section. We prove that each family member is a third-order convergent. In 

particular, we show that the Potra and Pta´k third-order method can be obtained as a special case of the 
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new family. Finally, the compark ison with other third-order methods is given to illustrate the 

performance of the presented methods. 

 

2. Iterative methods and convergence analysis 

We consider the two-substep Newton method given by 
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Our aim is to find a correction term for the second substep (9) that will yield a third-order method. To do 

this, first consider fitting the function f(x) around the point   ,n nx f x with the third-degree 

polynomial 

           3 2 10g x ax bx cx d     

Imposing the tangency condition at the nth iterate nx  

              11n ng x f x   

On to (10), we have 
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Thereby obtaining the first derivative of the approximating polynomial  
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Now, when nz  is defined by (8) we approximate  nf z  as 
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Using (14) in (9) we obtain the new two-parameter family of methods 
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Where 2 , 3b a      for the methods defined by (16), we have 
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Theorem 2.1. Let I  be a simple zero of sufficiently differentiable function :f I  for an open interval I

.if 0x  is sufficiently close to  ,then the order of convergence of the methods defined by (16) is three, and it then 

satisfies the error equation 
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Proof: Let  be a simple zero of f . Using taylor expansion around nx  and taking into account   0f  

,we have  
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It then follows from (21) and (25) that  
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Since 1 1n ne x    ,this shows that the iterative methods defined by (16) have third-order convergence 

indeh pendent of any real values of k and l. This completes the proof.  

The family (16) includes, as particular cases, the following ones: 

For 0, 0    we obtain the Potra and Pta´k third-order method (2): 
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Where nz  is defined by (15). 

for 1, 0   , we obtain new third-order method: 
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Where nz  is defined by (15). 

for 0, 1   , we obtain another new third-order method: 
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3. Numerical examples 

All computations were done using MAPLE using 64 digit floating point arithmetics 

 : 64Digits  . We accept an approximate solution rather than the exact root, depending on the 

precision ( ) of the computer. We use the following stopping criteria for computer programs: (i) 

1n nx x    , (ii)  1nf x    , and so, when the stopping criterion is satisfied, xnþ1 is taken as the 

exact root a computed. We used  
1510  . 

We present some numerical test results for various cubically convergent iterative schemes in Table 1. 

Com. pared were the Newton method (NM), the method of Weerakoon and Fernando (4) (WF), the 

method derived from midpoint rule (5) (MP), the method of Homeier (6) (HM), the method of Kou et 

al. (7) (KM), and the methods (28) (CM1) and (29) (CM2) introduced in this paper. We remark that 

chosen for comparison are only the methods which do not require the computation of second or higher 

derivatives of the function to carry out iterations. We used the following test functions: 
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As convergence criterion, it was required that the distance of two consecutive approximations  for the 

zero was less than 10
15

. Also displayed are the number of iterations to approximate the zero (IT), the 

approximate zero x , and the value  f x . Note that the approximate zeroes were displayed only up 

to the 28th decimal places, so it making all looking the same though they may in fact differ. 

It is clear from Table 1 that the proposed methods in this work show at least equal performance as 

comt pared with the other known methods of the same order. It is also seen from these numerical 

experiments that 

Table 1 

Comparison of various cubically convergent iterative methods and the newton method 

 IT  x   f x    

1 0, 1.27f x       

NM 5 1.3652300134140968457608068290  2.72e-41 1.83e-21 

WF 4 1.3652300134140968457608068290 0 3.0e -35 

MP 4 1.3652300134140968457608068290 0 2.60e-35 

HM 3 1.3652300134140968457608068290 -4.45e-48 2.07e-16 

KM 4 1.3652300134140968457608068290 0 1.77e-33 

CM1 4 1.3652300134140968457608068290 0 2.26e-31 

CM2 4 1.3652300134140968457608068290 0 2.38e-33 

2 0, 3.5f x       

NM 7 1.4044916482153412260350868178 -3.03e-43 3.95e-22 

WF 5 1.4044916482153412260350868178 -2.0e-63 2.12e-30 

MP 5 1.4044916482153412260350868178 -4.56e-61 6.76e-21 

HM 5 1.4044916482153412260350868178 -2.0 e-63 9.30e-33 

KM 5 1.4044916482153412260350868178 1.18e-45 7.67e-28 

CM1 5 1.4044916482153412260350868178 1.3 e-63 1.47e-28 

CM2 6 1.4044916482153412260350868178 -2.0e-63 2.47e-40 

3 0, 0f x       

NM 5 0.25753028543986076045536730494 -1.90e-35 7.16e-18 

WF 4 0.25753028543986076045536730494 0 1.97e-34 

MP 3 0.25753028543986076045536730494 0 4.0 e-27 
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HM 4 0.25753028543986076045536730494 0 4.0 e-29 

KM 4 0.25753028543986076045536730494 -6.07e-57 2.50e-19 

CM1 4 0.25753028543986076045536730494 0 8.11e-29 

CM2 4 0.25753028543986076045536730494 -6.17e-58 1.08e-19 

4 0, 1.2f x       

NM 5 0.73908513321516064165531208767 -1.90e-35 7.16e-18 

WF 4 0.73908513321516064165531208767 0 1.97e-34 

MP 4 0.73908513321516064165531208767 0 2.72e-27 

HM 4 0.73908513321516064165531208767 0 4.0 e-29 

KM 4 0.73908513321516064165531208767 -6.07e-57 2.50e-19 

CM1 4 0.73908513321516064165531208767 0 8.11e-29 

CM2 4 0.73908513321516064165531208767 -6.17e-58 1.08e-19 

5 0, 1.8f x       

NM 6 2 2.87e-41 3.09e-21 

WF 4 2 -4.01e-49 4.86e-17 

MP 4 2 -7.98e-54 1.43e-18 

HM 4 2 0 6.52e-36 

KM 4 2 -1.56e-45 7.30e-16 

CM1 5 2 0 1.33e-23 

CM2 4 2 0 3.08e-23 

6 0, 13f x       

NM  Divergent   

WF 6 1.8954942670339809471440357381 1.63e-60 1.87e-20 

MP 5 1.8954942670339809471440357381 -3.0 e-64 2.93e-28 

HM  Divergent   

KM  Divergent   

CM1 7 1.8954942670339809471440357381 -9.85e-58 9.56e-20 

CM2 51 1.8954942670339809471440357381 -9.79e-57 1.53e-19 

7 0, 2f x        

NM 9 -1.2076478271309189270094167584 -2.27e-40 2.73e-21 

WF 7 -1.2076478271309189270094167584 -4.0 e-63 3.11e-44 

MP 6 -1.2076478271309189270094167584 -4.0 e-63 2.12e-23 

HM 6 -1.2076478271309189270094167584 -4.0 e-63 2.57e-32 

KM 6 -1.2076478271309189270094167584 -4.0 e-63 8.87e-34 

CM1 7 -1.2076478271309189270094167584 -4.0 e-63 2.31e-35 

CM2 7 -1.2076478271309189270094167584 -4.0 e-63 2.25e-34 

 

in almost all of the cases the presented methods appear to be as robust as compared other methods. The 

most important characteristic of the proposed methods is that they do not require to compute second 

or higher derivatives of the function to carry out iterations. 
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4. Conclusion 

In this paper, we presented a new two-parameter family of modified Newton’s methods which includes, as 

a particular case, the Potra and Pta´k third-order method. Per iteration the new methods require two 

evaluations of the function and one evaluation of its first derivative. We have shown that each family 

member is cubically convergent, and observed from numerical examples that the proposed methods 

show at least equal perforc mance as compared with the other known methods of the same order. 
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