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ABSTRACT 

 

Crack segmentation in pavement infrastructure is crucial for maintaining road safety and optimizing maintenance 

strategies. Traditional manual inspection methods are labor-intensive and subjective, necessitating automated 

deep learning solutions. This research introduces a multitask learning framework leveraging the YOLOv8 

architecture for accurate and efficient crack segmentation. The methodology includes data collection, 

preprocessing, model training, and evaluation using key performance metrics such as precision, recall, F1-score, 

and mean Intersection over Union (mIoU). Domain adaptation techniques are integrated to enhance the model’s 

generalization across diverse pavement surfaces. The proposed model employs adaptive hyperparameter tuning 

and a semi-supervised learning approach to improve segmentation performance. Experimental results 

demonstrate an mIoU of 89.4%, outperforming conventional methods in both accuracy and robustness. The 

findings highlight the potential of deep learning-based adaptive segmentation for real-world applications in 

pavement monitoring and maintenance, enabling proactive maintenance planning and cost reduction. 
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I. INTRODUCTION 

Pavement deterioration is a growing concern, leading to higher maintenance costs and compromised road safety. 

Cracks are the most common pavement defects, requiring timely detection and repair. Traditional manual 

inspection methods are labour-intensive and error-prone, whereas automated deep learning-based approaches 

offer high accuracy and efficiency. This research presents a multitask learning framework using YOLOv8 for 

crack segmentation, leveraging domain adaptation to enhance model generalization across different pavement 

types. The integration of deep learning and computer vision techniques enables precise segmentation of cracks, 

reducing the dependency on human inspectors. The study further investigates the role of data augmentation and 

transfer learning in enhancing model adaptability. The research aims to provide an end-to-end automated system 

capable of detecting, classifying, and segmenting pavement cracks with high precision. Additionally, we explore 

the impact of using synthetic datasets in training, bridging the domain gap between different pavement textures 

and lighting conditions. The growing reliance on AI-driven methodologies in civil infrastructure underscores the 

importance of explainable AI in making these models interpretable and reliable for real-world applications. The 

remainder of this paper discusses existing works in crack detection, the proposed methodology, experimental 

results, and future research directions. 

 

II. LITERATURE REVIEW 

Recent advancements in deep learning have significantly improved pavement crack detection. Conventional 

approaches include edge detection and thresholding, but these methods lack robustness against varying lighting 

and surface conditions. CNN-based architectures, such as U-Net and SegNet, have shown promise in semantic 

segmentation tasks. YOLO-based models have gained traction for real-time object detection, with YOLOv8 

offering improved accuracy and computational efficiency. Our study builds upon these findings by incorporating 

domain adaptation for improved cross-dataset performance. 
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III. RELATED WORK 

 

Recent advancements in deep learning have significantly improved pavement crack detection. Conventional 

approaches include edge detection and thresholding, but these methods lack robustness against varying lighting 

and surface conditions. CNN-based architectures, such as U-Net and SegNet, have shown promise in semantic 

segmentation tasks. YOLO-based models have gained traction for real-time object detection, with YOLOv8 

offering improved accuracy and computational efficiency. Several studies have explored the use of self-supervised 

learning and domain adaptation in crack detection to mitigate the challenge of labeled data scarcity. Other 

approaches incorporate generative adversarial networks (GANs) to create synthetic datasets for model training, 

enhancing the generalization of deep learning models across diverse real-world environments. Transfer learning 

has also been explored in various studies, allowing pre-trained models to be fine-tuned on crack detection datasets. 

Furthermore, explainability techniques such as Grad-CAM have been applied to visualize the regions of interest 

in crack images, improving model interpretability for decision-making in infrastructure maintenance. 

 

IV. METHODOLOGY 

 

The proposed methodology consists of multiple phases: data collection, preprocessing, model training, and 

evaluation. 

1. Data Collection & Annotation: We utilize a diverse dataset comprising crack images from Kaggle and 

real-world road surveys. Images are annotated using Roboflow’s annotation tool, ensuring high-quality 

labeled data. 

2. Preprocessing: Data augmentation techniques, including histogram equalization, rotation, and flipping, 

are applied to enhance model robustness. Noise reduction techniques such as Gaussian blurring and 

contrast normalization are also incorporated. 

3. Model Architecture: The YOLOv8 framework is chosen for its real-time detection capabilities and 

accuracy. The model is trained using a multitask learning approach, optimizing segmentation and 

classification simultaneously. An attention-based feature extraction module is incorporated to refine 

crack boundary detection. 

4. Training & Evaluation: The model is trained for 100 epochs using a batch size of 16. Performance is 

evaluated using precision, recall, F1-score, and mIoU. A comparison with traditional CNN models such 

as U-Net and DeepLabV3+ is conducted to assess the effectiveness of the proposed approach. 

 

 

Flowchart Representation of the Proposed Methodology: 
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V. EXPERIMENTAL SETUP AND ANALYSIS 

The experiments are conducted on a high-performance computing environment with an Intel Core i9 processor, 

32GB RAM, and an NVIDIA RTX 3090 GPU. The dataset is divided into an 80:20 training-to-testing ratio. Data 

augmentation is employed to increase dataset diversity, ensuring improved model generalization. The performance 

of the proposed YOLOv8-based segmentation is benchmarked against traditional CNN architectures. The primary 

evaluation metrics include accuracy, precision, recall, F1-score, and mIoU. Ablation studies are performed to 

analyze the impact of hyperparameter tuning and transfer learning. Results indicate that the YOLOv8 model 

achieves a precision of 91.2% and an mIoU of 89.4%, surpassing conventional crack segmentation techniques. 

The study further evaluates the inference time of the model to assess its feasibility for real-time deployment in 

infrastructure monitoring systems. Comparative analysis with state-of-the-art models highlights the advantages of 

incorporating domain adaptation techniques. The proposed model demonstrates enhanced robustness against 

varying pavement textures, shadows, and illumination conditions. 

 

VI. RESULTS & DISCUSSION 

 

Our approach achieves an mIoU of 89.4%, outperforming traditional segmentation models. The YOLOv8 

framework efficiently segments cracks even in noisy environments. Domain adaptation techniques improve model 

generalization across different pavement types, reducing false positives and enhancing detection accuracy. The 

proposed model shows potential for integration into real-time road maintenance systems. 
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• Epoch: This column represents the training epoch or iteration number. An 

epoch is one complete pass through the entire training dataset. 

• train/box_loss: This is the loss associated with bounding box predictions during 

training. It measures how well the model is able to predict the locations of objects 

(in this case, potentially crack regions). 

• train/cls_loss: This loss pertains to the classification aspect of the model. It 

measures how well the model can classify the objects or regions it identifies, 
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potentially distinguishing between "crack" 

• train/dfl_loss: This loss may be associated with the model's dense feature 

learning or some other specific aspect of the architecture. 

• metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-

95(B): These columns show various metrics for the "B" class, which might 

represent one of the classes in your dataset, possibly "crack These metrics are 

commonly used for object detection tasks and evaluate precision, recall, mean 

Average Precision (mAP) at an IoU (Intersection over Union) threshold of 0.5, and 

mAP over a broader range of IoU thresholds (50-95) 

 

VII. CONCLUSION 

 

This research demonstrates the effectiveness of a multitask learning approach for pavement crack segmentation. 

The integration of YOLOv8 and domain adaptation enhances accuracy and robustness, making it suitable for 

real-world applications. Future work includes deploying the model on edge devices for on-site crack detection 

and integrating explainable AI techniques to enhance model interpretability. Additionally, active learning 

approaches will be explored to reduce the dependency on manual annotations, improving the scalability of 

automated pavement monitoring systems. 
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