
Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4182 www.ijariie.com 2389

Adaptive Replication Management in HDFS

based on similarity based prediction Techniques
Mr.Yogesh Shivaji Sapnar, Mr.Milindkumar Balchandra Vaidya

ME Student, Department of Computer Engineering, Amrutvahini COE,Maharashtra, India

Professor, Department of Computer Engineering, Amrutvahini COE,Maharashtra, India

ABSTRACT
The number of applications based on Apache Hadoop is dramatically increasing due to the robustness and dynamic

features of this system. At the heart of Apache Hadoop, the Hadoop Distributed File System (HDFS) provides the

reliability and high availability for computation by applying a static replication by default. However, because of the

characteristics of parallel operations on the application layer, the access rate for each data file in HDFS is

completely different. Consequently, maintaining the same replication mechanism for every data file leads to

detrimental effects on the performance. By rigorously considering the drawbacks of the HDFS replication, this

paper proposes an approach to dynamically replicate the data file based on the predictive analysis. With the help of

probability theory, the utilization of each data file can be predicted to create a corresponding replication strategy.

Eventually, the popular files can be subsequently replicated according to their own access potentials. For the

remaining low potential files, an erasure code is applied to maintain the reliability. Hence, our approach

simultaneously improves the availability while keeping the reliability in comparison to the default scheme.

Furthermore, the complexity reduction is applied to enhance the effectiveness of the prediction when dealing with

Big Data.

Keyword:- Replication, HDFS, Proactive Prediction, Optimization, Bayesian Learning, Gaussian Process.

INTRODUCTION

THE evolution of big data has created a phenomenon in application and solution development to extract, process

and store useful information as it emerges to deal with new challenges. In this area, Apache Hadoop is one of the

most renowned parallel frameworks. Not only is it used to achieve high availability, Apache Hadoop is also

designed to detect and handle the failures as well as maintain the data consistency. Coming along with the

development of Apache Hadoop, the Hadoop Distributed File System (HDFS) has been introduced to provide the

reliability and high-throughput access for data-centric applications. Gradually, HDFS has become a suitable storage

framework for parallel and distributed computing, especially for MapReduce engine, which was originally

developed by Google to cope with the indexing problems on big data. To improve the reliability, HDFS is initially

equipped with a mechanism that uniformly replicates three copies of every data file. This strategy is to maintain the

requirements of fault tolerance. Reasonably, keeping at least three copies makes the data more reliable and more

robust when tolerating the failures. However, this default replication strategy still remains a critical drawback with

regards to the performance aspect. Intuitively, the purpose of inventing Apache Hadoop was to achieve better

performance in data manipulation and processing [1]. Therefore, this purpose should be carefully studied at every

component. In the performance perspective, based on the well-known research of delay scheduling [2], if the task is

placed closer to the required data source, the system can achieves faster computation and better availability. The

metric measures the distance between the task and the corresponding data source can be referred to as the data

locality metric. The main reason for the improvement is twofold. First, the network overhead can be reduced on

runtime due to the availability of the local data, and so no inter-communication is needed to transfer the required

data from the remote nodes. Second, it is clear that the computation can start immediately on the input data which is

locally available, and so no extra task scheduling effort is consumed. Consequently, it is meaningful to say that

improving the data locality would immensely enhance the system performance in terms of availability and

calculation time. Although there are some studies on this subject matter, very few proactive solutions are proposed

that rigorously consider the nature of the job workload. Due to the fact that workload in Apache Hardtop consists of

short and long tasks together, these tasks should be handled fairly to accelerate the computation. Typically, the Fair

scheduler and delay scheduling algorithm [2] provide the optimal data locality when the system is filled with head-

of-line jobs and short tasks. However, the long tasks, if they are present would not be treated appropriately and thus

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4182 www.ijariie.com 2390

make the system imbalanced. One solution is to pro-actively prepare the potential replications before scheduling the

tasks in order to redirect and balance the computation. To do that, we aim to improve the data locality metric by

changing the replication scheme adaptively with regards to the popularity of the data file. Not only is the nature of

the access rate taken into account, but the replica placement is also carefully considered. Note that the access rate is

defined as the number of accesses in a given unit of time. Subsequently, the data files in HDFS are replicated based

on their own access potential as well as the overall status of the system. By definition, the access

2. RELATED WORK

As the technology is growing the size of data is also growing accordingly. People are living in the world of data. The

term big data came into the picture due to the awareness of people towards the technology. The term big data refers

to the dataset of huge size which are unable to store in typical database. These huge datasets cannot be analyzed by

simple RDBMS tools. Generally the RDBMS can store and process the structured dataset but the huge amount of

generated data can be structured unstructured or semi-structured [1]. Researchers are deluged with this continuously

increasing amount of data processing which is storm of data is flowing in almost all science research areas like web

data, biomedical, Bio-Informatics and other disciplines due to its high accuracy and capability to deal with high

dimension data [2-4]. The biggest challenge in front of researchers is how to do the proper analysis of this much

large scale of data so that the meaningful results can be drawn from it. To give better visualization of the large

scaled data, data mining comes into the picture. Data mining is the procedure to discover the new pattern from the

existing datasets [5-7]. Various data mining algorithm has been developed and implemented in practice by many

researchers. But now in the era of big data there is need to develop data mining algorithms which are suitable for big

data analysis. Several parallel algorithms have been developed using threads, MPI, Map Reduce and so on [5, 8].

Among all these techniques Map Reduce is practically well suited for large scale data analysis. In this paper an

algorithm for Map Reduce based SVM is implemented which run on several data size files and training time has

been calculated on Hardtop cluster. A major problem with SVM is to select the proper kernel parameters [9-10]. In

this paper the number of support vectors has been calculated on several dataset by varying the value of penalty

parameter C and RBF kernel function parameter σ. The corresponding accuracy and training time has been

calculated for the same. The paper is organized as follows. Section II describes about the basic of SVM, SVM

kernels, advantages and disadvantages of SVM and why there is need of parallel SVM. Section III describes the

architecture of parallel SVM. Section IV describes the Hardtop framework which is mainly focused on its two core

components HDFS and Map Reduce distributed programming model. Section V focuses on architecture and

algorithm of Map Reduce based parallel SVM. Section VI includes the experimental results. And finally Section VII

concludes with future work.

3.LITURATURE SURVEY

I will discuss the basic configurations of storage devices. These are static and do not allow the flexibility to tradeoff

capacity for availability or performance. I will also discuss the tiered storage systems that use multiple

configurations, or a caching configuration to provide static configurations that do not allow for a capacity tradeoff.

4.RAID

Redundant Arrays of Inexpensive Disks Redundant Arrays of Inexpensive Disks (RAID), have been around for

many years [1] and are in use throughout systems today. There are three basic types of array configurations, Figure

2.2 illustrates these configurations. Others exist, but for the most part they are a mixture of one of these basic types

and parity. • Striping (RAID-0) is the configuration where one places a chunk of data on individual storage devices

then accesses the data as a stripe across all storage devices. This configuration will aggregate bandwidth across

disks. • Mirroring (RAID-1) is the configuration where one places a copy of the data on another storage device. One

can then steer accesses to a storage device that is available to serve the data. This configuration will utilize single-

disk bandwidth of each disk in the configuration, effectively aggregating the disks bandwidth. • Concatenation

(JBOD) is the configuration where one linearly concatenates storage devices. All devices are able to store individual

files, no copies of data are made on this configuration. This configuration will aggregate bandwidth of disks based

on file system block allocation which spaces files to lower fragmentation.[1]

M. Zaharia, D. Borthakur, J. Sen Sarma, [2] Hadoop’s implementation of MapReduce resembles that of Google.

Hadoop runs over a distributed file system called HDFS, which stores three replicas of each block like GFS. Users

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4182 www.ijariie.com 2391

submit jobs consisting of a map function and a reduce function. Hadoop breaks each job into tasks. First, map tasks

process each input block (typically 64 MB) and produce intermediate results, which are key-value pairs. There is

one map task per input block. Next, reduce tasks pass the list of intermediate values for each key and through the

user’s reduce function, producing the job’s final output. Job scheduling in Hadoop is performed by a master, which

manages a number of slaves. Each slave has a fixed number of map slots and reduce slots in which it can run tasks.

Typically, administrators set the number of slots to one or two per core. The master assigns tasks in response to

heartbeats sent by slaves every few seconds, which report the number of free map and reduce slots on the slave.

Hadoop’s default scheduler runs jobs in FIFO order, with five priority levels. When the scheduler receives a

heartbeat indicating that a map or reduce slot is free, it scans through jobs in order of priority and submit time to find

one with a task of the required type. For maps, Hadoop uses a locality optimization as in Google’s MapReduce [18]:

after selecting a job, the scheduler greedily picks the map task in the job with data closest to the slave (on the same

node if possible, otherwise on the same rack, or finally on a remote rack).

K. S. Esmaili, L. Pamies-Juarez, and A. Datta, [3] Hadoop clusters are gaining more and more in popularity based

on their ability to parallelize and complete large scale computational tasks on big data. Service offerings of this type

have appeared in the recent years, covering a need for dynamic and on-demand creation of such data analytics

frameworks. The aim of this paper is to provide a mechanism for offering such virtual clusters as a service, with

built-in intelligence functionalities for efficient management. The target of these mechanisms is to predict future

demand of the files in the HDFS cluster and dynamically manipulate the according replication factor for availability

purposes, in order to improve performance and minimize storage overhead. To this end, real data have been utilized

as a dataset input to the prediction framework, based on Fourier series analysis, due to the latter's ability to capture

different periodicities that can influence service usage. Multiple time-step ahead prediction is performed in order to

enable proactive management (e.g. suitable replication strategy). We describe the framework's architecture,

necessary modifications to the client side of Apache Hadoop for data logging and the results of the applied method

on two real world datasets.

G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. [4]Data replication and placement was first studied

in thecontext of the ale assignment problem [2] and was shown to be a complex combinatorial optimization

problem. Replica placement has received attention from diverse research areas,e.g., delivery networks, web caching,

web proxy services, distribution storage system, etc.. They take into account probabilistic reliability to ensure

mutual consistency of replicated data. Scarlett [4] replicates blocks based on the observed probability in the past. It

computes a replication face-tor for each ale and creates budget-limited replicas distributed among the cluster, with

the goal of minimizing hotspots. Replicas are also aged to reserve space for new replicas. These methods are rather

static in the sense that they assume that access patterns are estimated in advance and remain unchanged, therefore a

one-time replica scheme is implemented and lasts for a long time period. In such case, the cost imposed by replica

adjustment is going to be amortized and can be ignored. However, the performance of these methods will deteriorate

when the access pattern changes over time. In contrast, dynamic methods adapt replicas in the clusters frequently as

upon every request, which are more responsive at the cost of higher system cost. One of the dynamic methods is

DARE proposed in ,which uses probabilistic sampling and a competitive aging algorithm independently at each

node to determine the number of replicas to allocate for each ale and the location for each replica. It tries to reduce

consuming extra network and computation resources. Based on the data popularity, ERMS[6] increases the number

of replicas for hot data and cleansup these extra replicas when the data cools down. The main purpose of ERMS is

improving the reliability and performance of HDFS. CDRM [3] builds up a cost model to capture the relationship

between availability and replication factor. The model is used to and the lower bound on the number of replicas

which are placed among distributed nodes to minimize blocking probability. Dynamic methods can bring better

performance to what they target at, but they also bring non-trivial extra replica adjustment cost that may deteriorate

the system’s overall performance. Of course if the replica adjustment cost is taken into consideration from the start

of development, the overhead can be kept under control with the dynamic approach. The methods mentioned above

all try to estimate a suitable access pattern for the coming future. Based on this access pat-tern, they focus on

different criteria, including access latency, system availability, minimizing resource hotspots, or resource

consumption . In this paper, an access pattern is estimated, too, but we will focus on reducing the internal traffic,

because internal network bandwidth is a scarce resource, and for the data center studied in our research, fileserving

is the main job which will be affected even more by heavy internal traffic than computing-centric data centers. There

have been other papers concerning traffic reduction, for example. But in the traffic is reduced at the price of storage

resource imbalance in which data are stored as much as possible at a small set of nodes in the cluster. In a real

system, storage usage should be reasonably balanced to spread the load evenly across all the nodes, so each node

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4182 www.ijariie.com 2392

still has spare room for performance tuning and for sudden bursts in user demands. This is an important aspect

considered in our method.

5. CONCLUSION

Conclusion Big-data analysis is emerging as an important tool and file system performance when manipulating large

files is a critical aspect of performance for big-data analysis. Such analysis typically occurs over large collections of

data on distributed file systems. However, such distributed file systems are overlaid on underlying single-node local

file systems. In a busy distributed storage cluster, misplaced replicas will cause unnecessary internal traffic to move

them to the serving nodes. In this paper, we design and implement CRMS,a centralized replication management

scheme to solve the problem. The problem is rest formulated as a 0-1 IntegerPrograming problem, and a feasible

placement scheme is reached by solving this IP problem based on access history collected in the cluster. In order to

alleviate the overhead of adjustments and avoid over-sting, only a fraction of the replica adjustment is performed

according to an heuristic ad-dustmen algorithm. CRMS batches 4 adjustment steps together to keep node storage

usage in balance and stops adjustment when satisfactory internal traffic reduction is reached. From the experimental

results, we can see that CRMS meets our expectation and reduces internal traffic greatly comparing tithe unadjusted

situation in a real world cluster from XunleiInc.. In the future, we plan to improve CRMS by dynamically adjusting

the number of replicas as well, so popular data blocks can have more replicas at the server nodes to further reduce

the internal traffic

6.REFERENCES

[1] “What is apache hadoop?” https://hadoop.apache.org/, accessed: 2015-08-13.

[2] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica, “Delay scheduling: a simple

technique for achieving locality and fairness in cluster scheduling,” in Proceedings of the 5
th

 European conference

on Computer systems. ACM, 2010, pp. 265–278.

[3] K. S. Esmaili, L. Pamies-Juarez, and A. Datta, “The core storage primitive: Cross-object redundancy for efficient

data repair & access in erasure coded storage,” arXiv preprint arXiv:1302.5192, 2013.

[4] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica, D. Harlan, and E. Harris, “Scarlett:

Coping with skewed content popularity in mapreduce clusters.” in Proceedings of the Sixth Conference on

Computer Systems, ser. EuroSys ’11. New York, NY, USA: ACM, 2011, pp. 287–300. [Online]. Available:

http://doi.acm.org/10.1145/1966445.1966472

[5] G. Kousiouris, G. Vafiadis, and T. Varvarigou, “Enabling proactive data management in virtualized hadoop

clusters based on predicted data activity patterns.” in P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC),

2013 Eighth International Conference

on, Oct 2013, pp. 1–8.

[6] A. Papoulis, Signal analysis. McGraw-Hill, 1977, vol. 191.

