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ABSTRACT 
The number of applications based on Apache Hadoop is dramatically increasing due to the robustness and dynamic 

features of this system. At the heart of Apache Hadoop, the Hadoop Distributed File System (HDFS) provides the 

reliability and high availability for computation by applying a static replication by default. However, because of the 

characteristics of parallel operations on the application layer, the access rate for each data file in HDFS is 

completely different. Consequently, maintaining the same replication mechanism for every data file leads to 

detrimental effects on the performance. By rigorously considering the drawbacks of the HDFS replication, this 

paper proposes an approach to dynamically replicate the data file based on the predictive analysis. With the help of 

probability theory, the utilization of each data file can be predicted to create a corresponding replication strategy. 

Eventually, the popular files can be subsequently replicated according to their own access potentials. For the 

remaining low potential files, an erasure code is applied to maintain the reliability. Hence, our approach 

simultaneously improves the availability while keeping the reliability in comparison to the default scheme. 

Furthermore, the complexity reduction is applied to enhance the effectiveness of the prediction when dealing with 

Big Data. 
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INTRODUCTION 

THE evolution of big data has created a phenomenon in application and solution development to extract, process 

and store useful information as it emerges to deal with new challenges. In this area, Apache Hadoop is one of the 

most renowned parallel frameworks. Not only is it used to achieve high availability, Apache Hadoop is also 

designed to detect and handle the failures as well as maintain the data consistency. Coming along with the 

development of Apache Hadoop, the Hadoop Distributed File System (HDFS) has been introduced to provide the 

reliability and high-throughput access for data-centric applications. Gradually, HDFS has become a suitable storage 

framework for parallel and distributed computing, especially for MapReduce engine, which was originally 

developed by Google to cope with the indexing problems on big data. To improve the reliability, HDFS is initially 

equipped with a mechanism that uniformly replicates three copies of every data file. This strategy is to maintain the 

requirements of fault tolerance. Reasonably, keeping at least three copies makes the data more reliable and more 

robust when tolerating the failures. However, this default replication strategy still remains a critical drawback with 

regards to the performance aspect. Intuitively, the purpose of inventing Apache Hadoop was to achieve better 

performance in data manipulation and processing [1]. Therefore, this purpose should be carefully studied at every 

component. In the performance perspective, based on the well-known research of delay scheduling [2], if the task is 

placed closer to the required data source, the system can achieves faster computation and better availability. The 

metric measures the distance between the task and the corresponding data source can be referred to as the data 

locality metric. The main reason for the improvement is twofold. First, the network overhead can be reduced on 

runtime due to the availability of the local data, and so no inter-communication is needed to transfer the required 

data from the remote nodes. Second, it is clear that the computation can start immediately on the input data which is 

locally available, and so no extra task scheduling effort is consumed. Consequently, it is meaningful to say that 

improving the data locality would immensely enhance the system performance in terms of availability and 

calculation time. Although there are some studies on this subject matter, very few proactive solutions are proposed 

that rigorously consider the nature of the job workload. Due to the fact that workload in Apache Hardtop consists of 

short and long tasks together, these tasks should be handled fairly to accelerate the computation. Typically, the Fair 

scheduler and delay scheduling algorithm [2] provide the optimal data locality when the system is filled with head-

of-line jobs and short tasks. However, the long tasks, if they are present would not be treated appropriately and thus 
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make the system imbalanced. One solution is to pro-actively prepare the potential replications before scheduling the 

tasks in order to redirect and balance the computation. To do that, we aim to improve the data locality metric by 

changing the replication scheme adaptively with regards to the popularity of the data file. Not only is the nature of 

the access rate taken into account, but the replica placement is also carefully considered. Note that the access rate is 

defined as the number of accesses in a given unit of time. Subsequently, the data files in HDFS are replicated based 

on their own access potential as well as the overall status of the system. By definition, the access 

 

2. RELATED WORK 

 
As the technology is growing the size of data is also growing accordingly. People are living in the world of data. The 

term big data came into the picture due to the awareness of people towards the technology. The term big data refers 

to the dataset of huge size which are unable to store in typical database. These huge datasets cannot be analyzed by 

simple RDBMS tools. Generally the RDBMS can store and process the structured dataset but the huge amount of 

generated data can be structured unstructured or semi-structured [1]. Researchers are deluged with this continuously 

increasing amount of data processing which is storm of data is flowing in almost all science research areas like web 

data, biomedical, Bio-Informatics and other disciplines due to its high accuracy and capability to deal with high 

dimension data [2-4]. The biggest challenge in front of researchers is how to do the proper analysis of this much 

large scale of data so that the meaningful results can be drawn from it. To give better visualization of the large 

scaled data, data mining comes into the picture. Data mining is the procedure to discover the new pattern from the 

existing datasets [5-7]. Various data mining algorithm has been developed and implemented in practice by many 

researchers. But now in the era of big data there is need to develop data mining algorithms which are suitable for big 

data analysis. Several parallel algorithms have been developed using threads, MPI, Map Reduce and so on [5, 8]. 

Among all these techniques Map Reduce is practically well suited for large scale data analysis. In this paper an 

algorithm for Map Reduce based SVM is implemented which run on several data size files and training time has 

been calculated on Hardtop cluster. A major problem with SVM is to select the proper kernel parameters [9-10]. In 

this paper the number of support vectors has been calculated on several dataset by varying the value of penalty 

parameter C and RBF kernel function parameter σ. The corresponding accuracy and training time has been 

calculated for the same. The paper is organized as follows. Section II describes about the basic of SVM, SVM 

kernels, advantages and disadvantages of SVM and why there is need of parallel SVM. Section III describes the 

architecture of parallel SVM. Section IV describes the Hardtop framework which is mainly focused on its two core 

components HDFS and Map Reduce distributed programming model. Section V focuses on architecture and 

algorithm of Map Reduce based parallel SVM. Section VI includes the experimental results. And finally Section VII 

concludes with future work. 

 

3.LITURATURE SURVEY 

 
I will discuss the basic configurations of storage devices. These are static and do not allow the flexibility to tradeoff 

capacity for availability or performance. I will also discuss the tiered storage systems that use multiple 

configurations, or a caching configuration to provide static configurations that do not allow for a capacity tradeoff. 

 

4.RAID 

 
Redundant Arrays of Inexpensive Disks Redundant Arrays of Inexpensive Disks (RAID), have been around for 

many years [1] and are in use throughout systems today. There are three basic types of array configurations, Figure 

2.2 illustrates these configurations. Others exist, but for the most part they are a mixture of one of these basic types 

and parity. • Striping (RAID-0) is the configuration where one places a chunk of data on individual storage devices 

then accesses the data as a stripe across all storage devices. This configuration will aggregate bandwidth across 

disks. • Mirroring (RAID-1) is the configuration where one places a copy of the data on another storage device. One 

can then steer accesses to a storage device that is available to serve the data. This configuration will utilize single-

disk bandwidth of each disk in the configuration, effectively aggregating the disks bandwidth. • Concatenation 

(JBOD) is the configuration where one linearly concatenates storage devices. All devices are able to store individual 

files, no copies of data are made on this configuration. This configuration will aggregate bandwidth of disks based 

on file system block allocation which spaces files to lower fragmentation.[1] 

M. Zaharia, D. Borthakur, J. Sen Sarma, [2] Hadoop’s implementation of MapReduce resembles that of Google. 

Hadoop runs over a distributed file system called HDFS, which stores three replicas of each block like GFS. Users 
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submit jobs consisting of a map function and a reduce function. Hadoop breaks each job into tasks. First, map tasks 

process each input block (typically 64 MB) and produce intermediate results, which are key-value pairs. There is 

one map task per input block. Next, reduce tasks pass the list of intermediate values for each key and through the 

user’s reduce function, producing the job’s final output. Job scheduling in Hadoop is performed by a master, which 

manages a number of slaves. Each slave has a fixed number of map slots and reduce slots in which it can run tasks. 

Typically, administrators set the number of slots to one or two per core. The master assigns tasks in response to 

heartbeats sent by slaves every few seconds, which report the number of free map and reduce slots on the slave. 

Hadoop’s default scheduler runs jobs in FIFO order, with five priority levels. When the scheduler receives a 

heartbeat indicating that a map or reduce slot is free, it scans through jobs in order of priority and submit time to find 

one with a task of the required type. For maps, Hadoop uses a locality optimization as in Google’s MapReduce [18]: 

after selecting a job, the scheduler greedily picks the map task in the job with data closest to the slave (on the same 

node if possible, otherwise on the same rack, or finally on a remote rack). 

 

K. S. Esmaili, L. Pamies-Juarez, and A. Datta, [3] Hadoop clusters are gaining more and more in popularity based 

on their ability to parallelize and complete large scale computational tasks on big data. Service offerings of this type 

have appeared in the recent years, covering a need for dynamic and on-demand creation of such data analytics 

frameworks. The aim of this paper is to provide a mechanism for offering such virtual clusters as a service, with 

built-in intelligence functionalities for efficient management. The target of these mechanisms is to predict future 

demand of the files in the HDFS cluster and dynamically manipulate the according replication factor for availability 

purposes, in order to improve performance and minimize storage overhead. To this end, real data have been utilized 

as a dataset input to the prediction framework, based on Fourier series analysis, due to the latter's ability to capture 

different periodicities that can influence service usage. Multiple time-step ahead prediction is performed in order to 

enable proactive management (e.g. suitable replication strategy). We describe the framework's architecture, 

necessary modifications to the client side of Apache Hadoop for data logging and the results of the applied method 

on two real world datasets. 

G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. [4]Data replication and placement was first studied 

in thecontext of the ale assignment problem [2] and was shown to be a complex combinatorial optimization 

problem. Replica placement has received attention from diverse research areas,e.g., delivery networks, web caching, 

web proxy services, distribution storage system, etc.. They take into account probabilistic reliability to ensure 

mutual consistency of replicated data. Scarlett [4] replicates blocks based on the observed probability in the past. It 

computes a replication face-tor for each ale and creates budget-limited replicas distributed among the cluster, with 

the goal of minimizing hotspots. Replicas are also aged to reserve space for new replicas. These methods are rather 

static in the sense that they assume that access patterns are estimated in advance and remain unchanged, therefore a 

one-time replica scheme is implemented and lasts for a long time period. In such case, the cost imposed by replica 

adjustment is going to be amortized and can be ignored. However, the performance of these methods will deteriorate 

when the access pattern changes over time. In contrast, dynamic methods adapt replicas in the clusters frequently as 

upon every request, which are more responsive at the cost of higher system cost. One of the dynamic methods is 

DARE proposed in ,which uses probabilistic sampling and a competitive aging algorithm independently at each 

node to determine the number of replicas to allocate for each ale and the location for each replica. It tries to reduce 

consuming extra network and computation resources. Based on the data popularity, ERMS[6] increases the number 

of replicas for hot data and cleansup these extra replicas when the data cools down. The main purpose of ERMS is 

improving the reliability and performance of HDFS. CDRM [3] builds up a cost model to capture the relationship 

between availability and replication factor. The model is used to and the lower bound on the number of replicas 

which are placed among distributed nodes to minimize blocking probability. Dynamic methods can bring better 

performance to what they target at, but they also bring non-trivial extra replica adjustment cost that may deteriorate 

the system’s overall performance. Of course if the replica adjustment cost is taken into consideration from the start 

of development, the overhead can be kept under control with the dynamic approach. The methods mentioned above 

all try to estimate a suitable access pattern for the coming future. Based on this access pat-tern, they focus on 

different criteria, including access latency, system availability, minimizing resource hotspots, or resource 

consumption . In this paper, an access pattern is estimated, too, but we will focus on reducing the internal traffic, 

because internal network bandwidth is a scarce resource, and for the data center studied in our research, fileserving 

is the main job which will be affected even more by heavy internal traffic than computing-centric data centers. There 

have been other papers concerning traffic reduction, for example. But in the traffic is reduced at the price of storage 

resource imbalance in which data are stored as much as possible at a small set of nodes in the cluster. In a real 

system, storage usage should be reasonably balanced to spread the load evenly across all the nodes, so each node 
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still has spare room for performance tuning and for sudden bursts in user demands. This is an important aspect 

considered in our method. 

 

 
5.   CONCLUSION 

 
Conclusion Big-data analysis is emerging as an important tool and file system performance when manipulating large 

files is a critical aspect of performance for big-data analysis. Such analysis typically occurs over large collections of 

data on distributed file systems. However, such distributed file systems are overlaid on underlying single-node local 

file systems. In a busy distributed storage cluster, misplaced replicas will cause unnecessary internal traffic to move 

them to the serving nodes. In this paper, we design and implement CRMS,a centralized replication management 

scheme to solve the problem. The problem is rest formulated as a 0-1 IntegerPrograming problem, and a feasible 

placement scheme is reached by solving this IP problem based on access history collected in the cluster. In order to 

alleviate the overhead of adjustments and avoid over-sting, only a fraction of the replica adjustment is performed 

according to an heuristic ad-dustmen algorithm. CRMS batches 4 adjustment steps together to keep node storage 

usage in balance and stops adjustment when satisfactory internal traffic reduction is reached. From the experimental 

results, we can see that CRMS meets our expectation and reduces internal traffic greatly comparing tithe unadjusted 

situation in a real world cluster from XunleiInc.. In the future, we plan to improve CRMS by dynamically adjusting 

the number of replicas as well, so popular data blocks can have more replicas at the server nodes to further reduce 

the internal traffic 
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