
Vol-3 Issue-5 2017 IJARIIE-ISSN(O)-2395-4396

6753 www.ijariie.com 1101

An Improved Priority Dynamic Quantum

Time Round-Robin Scheduling Algorithm

Nirali A. Patel
PG Student, Information Technology, L.D. College Of Engineering,Ahmedabad,India

ABSTRACT
 In real-time embedded systems, scheduling policy is considered one of the main factors that affect their

performance. It helps to choose which task should be selected first from ready queue to run. Round Robin (RR)

scheduling algorithm is widely used and its performance highly depends on a Quantum size Qt, which is a

predefined amount of time assigned by CPU to every task to be executed. However, the performance degrades

with respect to an average waiting time (AWT), an average Turn Around time (ATT) and a number of Context

Switches (NCS). This paper presents a new improved dynamic Round Robin scheduling algorithm to reduce the

average waiting time, turn around time and the number of context switches in order to improve the system

overall performance. The queue size distribution and average waiting time for a time-shared system using

round-robin (RR) scheduling, with and without overhead, are determined. In this study, the incoming processes

are prioritized, and dynamic quantum times are assigned depending on the level of priority. With these

parameters, RR versus priority dynamic quantum time round robin scheduling algorithm is analyzed to explore

the effect of changing the quantum time of processes and determine the optimum context switches, turnaround

time, and waiting time.

Keywords—Round Robin; Priority Dynamic Quantum Time; scheduling algorithms. average waiting time,

system performance, turn around time, context switch, real-time embedded systems

Introduction
Operating system is the interface between a user and a machine and it has many features to deliver an excellent

service to the user. Scheduling is one of that fundamental features and it is responsible about deciding which job

is selected and run from ready queue[1]. Scheduling method affects CPU performance since it determines the

CPU and resources utilizations[1,2]. The main purpose of scheduling policy is to ensure completely fairness

between different tasks in the ready queue, maximizing the throughput, minimizing the average waiting and

turn-around times and the overhead occurs from context switches, and makes sure no starvation happens at all.

Two schemes of scheduling algorithms exist today which are l. Preemptive algorithms: where a task is blocked

by a higher priority process; and 2. Non preemptive algorithms: where the task completes its execution time

even if a higher priority process has arrived[1]. Several factors are used to determine whether a scheduling

policy is good or not and can be summarized as follows: A. Waiting time: the time between the task becomes

available until the first time of its execution; B. CPU Utilization: the percentage of the CPU being busy; C.

Turn-around time: the summation of waiting and execution time for each task and D. Fairness: which is dividing

the CPU time equally among all available jobs[1,2,3]. Multiple algorithms exist which can be summarized as

follows:

1) First-Come-First-Serve (FCFS): a process arrives first is immediately allocated to the CPU. The major

disadvantage of this algorithm is that a process with small burst time takes long time waiting to be executed if

another process with long burst is chosen first. 2) Shortest Job First (SJF): this approach allocates processes with

short bursts first from their ready queue. It is more efficient than FCFS since it minimizes the average waiting

time for small jobs. However, processes with long burst time wait longer which cause a starvation for CPU

resources. The drawback of this method is that it requires advance knowledge about CPU burst time which is

impractical and difficult in most cases. 3) Round Robin (RR): each process gets its tum to be executed in a fairly

time slicing; this concept is known as Time Quantum and it is fixed for all processes. When the quantum time

for any process expires, it is temporarily blocked and placed at the end of the ready queue. This procedure is

applied on all available tasks until no more tasks exist in the ready queue. This algorithm's efficiency depends

totally on the quantum time; if it is small amount then frequent context switch occurs which causes too much of

overhead. On the other hand, too long quantum time increases the average waiting and tum-around times. 4)

Earliest Deadline First (EDF): a process with shortest deadline time gets its tum first since it has a highest

priority among all other processes. This algorithm is considered optimal can be used for both types of tasks

(periodic and aperiodic). 5) Multilevel Feedback Queues (MFQ): a process moves between different queues; this

action is characterized by the CPU burst time (8t). If the process requires too much time then it moves to a

Vol-3 Issue-5 2017 IJARIIE-ISSN(O)-2395-4396

6753 www.ijariie.com 1102

queue where lower priorities processes are placed. However, if it waits long time then it moves to the queue of

the higher priorities processes to prevent starvation from occurring[3,4,5,6].

In an operating system, many processes compete for the services provided by a central processing unit (CPU).

The scheduling algorithm of a computer should distribute “bursts” of computer time among these processes such

that the cycle time of a process is inversely related to its level of priority or importance while a reasonable cycle

time is maintained for all machine processes. This type of systems may be studied using classical queueing

theory. The processes of the system are the customers, and the CPU is the server. The processing time is the

service length in the queueing system. Few studies have intensively analyzed round-robin (RR) scheduling with

another algorithm, and no recent investigations in this area have been conducted. Several related studies will be

discussed in this section. Reference [7] presented an expression using RR queue size and average waiting time

for M/M/1 to assume a fixed switching time overhead for every slice time. This expression determined the

quantum size by studying a cost measure based on specific priorities of processes to decrease the process service

time. Meanwhile, a sharing queueing model of multithreading web server was demonstrated by [8]. Multiple

users were used in this experiment, and a single server, including a group of economic and flexible servers

(Apache), and a single-speed router were

used to verify and accomplish the model. Reference [9] presented an early analysis of the join-shortest-queue for

farms with shared processor by using the single queue that was isolated from other queues. The arrival rate of

the single queue was dependent on the number of processes at the same queue. Then, the impact of the other

queues was described using the conditional arrival rates. In [10] the performance of RR was investigated by

considering the process switching overhead such that an incoming process waited for all precedent processes to

arrive to obtain time slices before it was assigned its queue time.

I. ROUND-ROBIN SCHEDULING (RR)

The RR architecture is a pre-emptive version of the firstcome first-served scheduling algorithm. The tasks are

arranged in the ready queue in a first-come first-served manner, and the processor executes the task from the

ready queue on the basis of time slice. If the time slice ends and tasks are still being executed by the processor,

the scheduler will forcibly pre-empt the executing task and keep it at the end of the ready queue. Then, the

scheduler will allocate the processor to the next task in the ready queue. The pre-empted task will make its way

to the beginning of the ready list and will be executed by the processor from the point of interruption.

A scheduler requires a tick timer and a time management function to implement the RR architecture . The time

slice is proportional to the period of clock ticks . The time slice length is critical in a real-time operating system

(ROTS). The time slice should not be too small, which results in frequent context switches, and should be

slightly greater than the average task computation time.

II. PRIORITY DYNAMIC QUANTUM TIME ROUND-ROBIN (PDQT)

The RR scheduling algorithm does not prioritize and has fixed quantum time, which makes this algorithm

unsuitable for an RTOS. The RR is limited by high context switch, high waiting and turnaround times, and low

throughput. Thus, the RR scheduling algorithm is not the optimal choice for an RTOS. Priority RR scheduling is

limited by starvation, in which the least priority thread with fixed quantum time will be starved and pre-empted

by the highest priority thread. Thus, we propose an algorithm called priority dynamic quantum time round robin

scheduling algorithm (PDQT) that depends on the existing RR. The basic principle of PDQT involves different

priority levels and quantum times . PDQT is performed as follows:

 a) Priorities are set for the processes that enter the ready queue.

 b) The new quantum time is calculated depending on the old one by using a simple formula, q=k+n-1, where q

is the new quantum time, k is the old quantum time, and n is the priority of the processes in the ready queue.

c) Different quantum times are set for the processes on the basis of the level of priority. The highest priority

process will obtain the largest quantum time, q, and the lowest priority process will be assigned the smallest

quantum time, k.

d) The process in between will be assigned a quantum time that is 1 lower than the time of the process before it.

e) The original RR is applied with the levels of priority and new different quantum times.

f) The context switches, average turnaround time, and average waiting time are calculated. The existing RR is

improved by reducing the context switches, as well as by reducing the waiting and turnaround times, thereby

increasing throughput. The next sections present case studies to show the differences between RR and PDQT.

Vol-3 Issue-5 2017 IJARIIE-ISSN(O)-2395-4396

6753 www.ijariie.com 1103

III. ANALYSIS WITH QUEUEING THEORY

We built a mathematical model for our case study to illustrate the need for the processes to join the ready queue.

The model also shows the rules by which the processes are allowed into the processor and the time required for

execution. Queueing theory covers all these aspects to construct the model that is suitable to build all observable

models that include all features of a queue. In our case study, the unit requesting services are the processes, the

queue is the line of processes, and the server is the CPU. Queue indicates a waiting line or the formation of a

line while waiting for something. This process involves arriving items that wait to be served at the facility that

provides the service being sought .

IV. Case study

Five processes have been defined with CPU burst time, arrival times, and their priorities. These five processes

are scheduled in RR technique as well as according to the PDQT algorithm. The context switch, average waiting

time, and average turnaround time are calculated, the results are compared. We consider five processes (A, B, C,

D, and E) with different arrival times, but two processes, namely, B and C, are scheduled to arrive at the same

time. Thus, the priority of the process plays an important role in the execution of the processes.

Table-1:The Inputs For the threads of case study

Here, the process with the highest priority should proceed first whenever it arrives at the same time with another

process with lower priority. Table 1 shows the inputs of the processes, and Fig.1 shows the diagram of the case

study. Figs. 2 and 3 illustrate the Gantt chart of the process time slicing in RR and PDQT, respectively. The

quantum time is 3millisecond.

Fig-1:Diagram Of Case Study

Fig-2:Gantt chart of process time slicing in simple Round-Robin Architecture

Fig-3:Gantt chart of process time slicing in simple PDQT Architecture

Vol-3 Issue-5 2017 IJARIIE-ISSN(O)-2395-4396

6753 www.ijariie.com 1104

In accordance with the original RR, simple RR does not prioritize. Hence, five processes have been scheduled

using simple RR architecture, with a time slice of 3 millisecond. In RR algorithm, no process is allocated in the

CPU for more than one time slice in a row. If the CPU process exceeds onetime slice, the concerned process

will be pre-empted and placed into the ready queue. The process is pre-empted after the first quantum time, and

the CPU is given the next process that is in the ready queue (process B). A similar process is conducted for the

schedule until the first cycle is completed. In the second cycle, the same method is used to schedule the

processes. The PDQT algorithm uses process priorities and different quantum times depending on the level of

priority; thus, each process obtains a unique quantum time. The process with the highest priority obtains the

largest quantum time, the lowest priority process obtains the smallest quantum time, and the processes in

between obtain quantum time 1 less than the one before. By using RR, we obtained 26.2 milliseconds for

average turnaround time and 18.2 milliseconds for average waiting time, and the context switch is 14. By

applying PDQT, we got 23.8 and 15.2 milliseconds for average turnaround time and average waiting time,

respectively, and the context switch is 9. The two algorithms are applied with the given arrival times, burst

times, and priorities, where the processes enter the ready queue until the execution is completed before they

leave the system. We analyzed the times of these processes in the ready queue and the system. Tables 2 and 3

illustrate the analysis of the RR and PDQT processing times, respectively. The tables contain 9 or 10 columns.

The first one is the Task that enters to the ready queue, second, third and fourth are arrival, burst and quantum

times respectively. The fifth column is the moment that the process start processing inside the CPU, followed by

the end of time service (but not the processing). Next column contains one value either 1 or 0, where 1 for the

process which out of quantum time but still in service, however, 0 for the processes complete execution.

Waiting time column to calculate the waiting time for each process in every round. The last column to announce

that the processing for the process has been completed. An additional column added to table 3 for PDQT which

is the fourth one is the priority of the process.

Table-2:Analysis times of simple Round-Robin

Vol-3 Issue-5 2017 IJARIIE-ISSN(O)-2395-4396

6753 www.ijariie.com 1105

Table-3:Analysis Times Of PDQT

Table-4:Result of Analysis for two RR vs PDQT

In the table above, nw for RR is 8 while in PDQT is 4. That mean the number of processes in RR that had to

repeat their cycle to enter again to the ready queue and waiting for processing is double than in PDQT. Thus, the

probability of the processes to wait in the ready queue with PDQT less than in RR. Because the total time for

service the two algorithms is the same and there is no idle time in CPU (i.e. CPU always bust), so the activity of

CPU is 100% for the both algorithms. Moreover, the capacity of CPU with PDQT more than RR by about 0.1.

Processes in RR take more time for service and average time for service than in PDQT where it is 157, 31.4 and

151, 30.2 for RR and PDQT respectively. The probability the n number of processes to stay in CPU is 0.96 in

RR and 0.16 in PDQT while the mean number of processes in CPU with PDQT is greater than with RR. From

Vol-3 Issue-5 2017 IJARIIE-ISSN(O)-2395-4396

6753 www.ijariie.com 1106

all these results we conclude that by setting priorities and changing the quantum time from fixed to dynamic will

give RR more flexibility to execute more processes with less time and high throughput.

V. COMPARISON WITH EXISTING RR

The performance of the two algorithms are compared by considering some of the results with different quantum

times. Figs. 3 to 8 show the curves the equations indicating six factors (average turnaround time, average

waiting time, probability, CPU capacity, probability of n processes in the CPU, and mean number of processes

in CPU) and four quantum times (2, 3, 5, and 6). Results show that the proposed algorithm performs better than

existing RR for dynamic quantum time. The PDQT behaves better than RR in most cases under similar values of

quantum time.

Chart-1:Performance of RR and PDQT for quantum time and turnaround time

Chart-2:Performance of RR and PDQT for quantum time and waiting time

We can see from the curves above that our algorithm behave better than the existing RR in most of cases in term

of all the factors mentioned earlier. The peak of the two algorithms arrived to top with quantum time 3

according to turnaround time but the lowest value with quantum time 6. Moreover, the highest value of average

waiting time with RR when the quantum is 3 but 2 according to PDQT.

VI. CONCLUSION
We mathematically analyze the results of simple RR and proposed PDQT on the basis of queueing theory.

PDQT performs more efficiently than RR in most cases under similar quantum times. This algorithm also has

lower turnaround and waiting times. Thus, the operating system overhead is reduced, and throughput is

increased. Starvation is also reduced because the processes with the highest priorities are assigned with the

largest quantum time and are executed prior to the lower priority processes. The performance of time-shared

systems can be improved with the proposed algorithm and can also be modified to enhance the performance of a

real-time system.

REFERENCES
[1] A. R. S. K. Sahu and S. K. Samantra, "An Optimized Round Robin CPU Scheduling Algorithm

with Dynamic Time Quantum", International Journal of Computer Science, Engineering and Information

Technology (lJCSEIT),Vol. 5,No. I, February 2015.

[2] M. S. Iraji, "Time Sharing Algorithm with Dynamic Weighted Harmonic Round Robin", Journal of Asian

Scientific Research,

Vol. 5,No. 3,pp. 131-142,2015

Vol-3 Issue-5 2017 IJARIIE-ISSN(O)-2395-4396

6753 www.ijariie.com 1107

[3] D. Maste,L. Ragha and N. Marathe,"Intelligent Dynamic Time Quantum Allocation in MLFQ

Scheduling",International Journal of Information and Computation Technology, ISSN 0974-2239, Vol. 3, No.

4, pp. 311-322, 2013. International Research Publications House.

[4] A. Noon,A. Kalakech and S. Kadry,"A New Round Robin Based Scheduling Algorithm for Operating

Systems: Dynamic Quantum Using the Mean Average", International Journal of Computer Science Issues

(T.TCSI),Vol. 3,Issue 3,No. 1,pp. 224-229,May 2011.

[5] 1. S. Rajput and D. Gupta,"A Priority Based Round Robin CPU Scheduling Algorithm for Real Time

Systems", International Journal of Innovations in Engineering and Technology (TJIET), Vol. 1,Issue 3,pp. 1-

11,October 2012.

[6] H. S. Behera, R. Mohanty and D. Nayek, "A New Proposed Dynamic Quantum with Re-Adjusted Round

Robin Scheduling Algorithm and Its Performance Analysis", International Journal of Computer Applications

(0097 - 8887),Vol. 5,No. 5, pp. lO IS, August 201O.

[7] P. J. Rasch, "A queueing theory study of round-robin scheduling of time-shared computer systems," Journal

of the ACM (JACM), vol. 17, pp. 131-145, 1970.

[8] J. Cao, M. Andersson, C. Nyberg, and M. Kihl, "Web server performance modeling using an M/G/1/K* PS

queue," in Telecommunications, 2003. ICT 2003. 10th International Conference on, 2003, pp. 15011506.

[9] V. Gupta, M. H. Balter, K. Sigman, and W. Whitt, "Analysis of join-the-shortest-queue routing for web

server farms," Performance Evaluation, vol. 64, pp. 1062-1081, 2007.

[10] V. Gupta, "Finding the optimal quantum size: Sensitivity analysis of the M/G/1 round-robin queue," ACM

SIGMETRICS Performance Evaluation Review, vol. 36, pp. 104-106, 2008.

