
Vol-4 Issue-3 2018 IJARIIE-ISSN(O)-2395-4396

8766 www.ijariie.com 2316

Analysis and Comparative Study of Hadoop

Image Processing Frameworks

Ishit Vyas
1
, Digvijaysingh Chauhan

2
, Dr. M B Potdar

3
and Prof. Bhavika Gambhava

4

1
M.Tech Student, Dharmsinh Desai University,Nadiad-387001, Gujarat, India

2
 Project Scientist, Bhaskaracharya Institute for Space Applications and Geo-Informatics, Gandhinagar 382007, India

3
 Project Director, Bhaskaracharya Institute for Space Applications and Geo-Informatics, Gandhinagar 382007, India

4
 Assistant Professor (Computer Engineering), Dharmsinh Desai University,Nadiad-387001, Gujarat, India

ABSTRACT

With the advancement in networking and storage technologies over the past few years, sharing of data over the

Internet has been increased rapidly. Data types of the shared data has also become versatile. Data are shared in

forms in text, image, videos etc. With this increase of data, there has been arisen requirement to process those

data in order to find useful outcome out of that. In order to do so, Big Data technologies have been developed.

Hadoop is one of the most popular frameworks developed in Big Data technologies. But since Hadoop was

primarily developed to support textual data analysis, it is quite difficult to perform analysis on other formats

such as images and videos. To support image and video processing various other frameworks and libraries have

been developed. This paper demonstrates analysis and comparison between two Hadoop image processing

frameworks; HIPI and MIPr.

Key words: Hadoop, HIPI, Image Processing, MIPr

1. Introduction

The use of data presented in image format in fields of satellite imaging, medical imagery, astronomical data

analysis, computer vision etc. has been increased over the years. And as a result of it, requirements to process

those images have also been increased. Various algorithms, tools and techniques have been developed to analyze

and process those images. In last few years, the overall data stored and shared in digital form is increased so

much that it is difficult for traditional standalone data processing systems to analyze and process those data and

get an useful outcome from it. To overcome these issues various technologies such as distributed processing and

parallel programming models have been introduced. Also, requirements to modify or develop new algorithms

for processing data in distributed and parallel environments have been arisen.

1.1 Big Data

In field of computing, Big data refers to newfound ability to crunch a vast quantity of information, analyze it

instantly, and draw sometimes astonishing conclusions from it [1]. Essentially, the data is large enough that

traditional data processing systems are not capable of handling.

1.2 Apache Hadoop

The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets

across clusters of computers using simple programming models. It is designed to scale up from single servers to

thousands of machines, each offering local computation and storage. Rather than rely on hardware to deliver

high-availability, the library itself is designed to detect and handle failures at the application layer, so delivering

a highly-available service on top of a cluster of computers, each of which may be prone to failures [2]. Even

though there are other technologies exist, most of the Big Data are processed in Hadoop because it’s highly fault

tolerant highly scalable characteristics [3].

Hadoop project consist of four modules: Hadoop Common; which provides common utilities and support,

Hadoop Distributed File System; which is a distributed file system, Hadoop YARN; which is a framework for

Vol-4 Issue-3 2018 IJARIIE-ISSN(O)-2395-4396

8766 www.ijariie.com 2317

resource management and job scheduling and most importantly Hadoop MapReduce; a system for parallel

processing of large amount of data.

MapReduce is heart of Hadoop [4] ecosystem.

1.2.1 MapReduce

MapReduce is a programming model and an associated implementation for processing and generating large data

sets [5]. MapReduce essentially consist of two phases: Map and Reduce, and an additional hand-off process

called Shuffle and Sort. Mapper and Reducer are the interfaces implemented in order to provide the map and

reduce methods.

Data flow in MapReduce is as follows:

Fig -1: MapReduce Data flow

Table -1: MapReduce data flow stages

Input files Input files for MapReduce task are stored in HDFS.

InputFormat InputFormat defines how input files are split and read.

InputSplits InputSplits created by InputFormat represents the part of data processed by one mapper.

RecordReader RecordReader converts data into key/value pair.

Mapper Mapper takes input from RecordReader and convert it into intermediate key/value pair.

Combiner It performs local aggregation and minimize transfer between mapper and reducer.

Partitioner Partitioner is used when there is more than one reducer used. It performs partitioning of combiner

output.

Shuffling and

Sorting

The function of Shuffling is to transfer output of mapper to reducer, while Sorting perform

merging and sorting of map output according to keys.

Reducer The intermediate key/value pair generated by mapper is given as input and runs reducer function.

RecordWriter It writes key/value pair from the output of reducer to output files.

OutputFormat The format in which the output key/value pairs obtained from output file is determined by

OutputFormat.

Vol-4 Issue-3 2018 IJARIIE-ISSN(O)-2395-4396

8766 www.ijariie.com 2318

2. Big Data Image Processing

As per defined above, conventional image processing systems are not capable of processing big image data [6].

Hadoop is efficient at processing textual data, but when it comes to processing images, it becomes quite difficult

since the data of the image to be processed is taken as String format. Other than this, there is a major known

problem called as Small File Problem.

2.1 Problem while handling small files in Hadoop

The small file is one which is much smaller than the block size of HDFS. MapReduce tasks run more

efficiently when the input is one large file as opposed to many small files. If the file is very small and there

are a lot of them, then each map task processes very little input, and there are a lot more map tasks, each of

which imposes extra bookkeeping overhead [7]. Hence, there is significant reduction in performance. Reading

many number of small files is computationally expensive for HDFS. This occurs because each file, directory

and block in HDFS occupies 150 bytes in namenode [8]. To overcome the given problem, Hadoop provides

two file formats: Hadoop Archive (HAR) and Sequence Files. But, HAR is for archival purpose and is actually

perform slower reading than in standard way. [9]. While, Sequence files are time consuming to create and it

should be read serially.

2.2 Hadoop Image Processing Interface

HIPI is an image processing library designed to be used with the Apache Hadoop MapReduce parallel

programming framework.

HIPI facilitates efficient and high-throughput image processing with MapReduce style parallel programs

typically executed on a cluster. HIPI abstracts highly technical details and allows us to implement many of the

image processing techniques.

To overcome above problem given in section 2.1, HIPI introduces a new data type called HIPI Image Bundle

(HIB) that stores many images as one big pile so that MapReduce jobs can be performed more efficiently.

HIB (HIPI Image Bundle) is made up of two different files:

I. Data File: It contains the concatenated bundle of images

II. Index File: It contains information about offset of images in data file

HIB have similar speed to SequenceFile, but it does not have to be read serially. Also HIBs are more

customizable and mutable as compared to both of the above. In addition to this, HIPI maximizes data locality

by altering the data flow in MapReduce model.

Fig - 2: Data processing flow in HIPI [9]

In addition to HIB, which is the key component of HIPI, it also introduced a new step in processing of images.

The stage is called as “culling”. These steps allows filtering the images in a HIB based on various user defined

conditions. A new class – culler is implemented for this operation. This will reduce the unnecessary overhead

of processing irrelevant images for further stages.

For generating InputSplit, HIPI introduces HibInputFormat class, which is inherited from FileInputFormat

class. Then, the images are represented as objects of HipiImage abstract class associated with

HipiImageHeader. In that, images are represented in different formats and then given as input to the Mapper.

Vol-4 Issue-3 2018 IJARIIE-ISSN(O)-2395-4396

8766 www.ijariie.com 2319

The rest of the data flow is same as regular MapReduce model as per mentioned earlier. HIPI also includes

support for OpenCV.

2.3 MapReduce Image Processing (MIPr) framework

MIPr is MapReduce Image Processing framework. MIPr facilitates image processing in large size. MIPr

includes the implementation of image processing algorithm in MapReduce manner. MIPr is developed with the

aim of making image processing simpler and easier in Hadoop.

MIPr’s architecture is three layered [10]. The first one is core components layer which provides image

representation in various forms in Hadoop format such that that can be used as a value in MapReduce programs.

It also provides I/O tools. Second layer includes serial image processing function and MapReduce drivers. Third

layer consists of MapReduce image processing algorithms.

MIPr currently support image representations based on JAVA 2D and OpenIMAJ. In MIPr, their customized

InputFormat and OutputFormat classes are designed. Unlike HIPI and Open IMAJ, which combines many small

files into large files, MIPr does not necessarily require it. To solve the problem of handling many small files,

MIPr uses CombineFileInputFormat, which combines many small files into one large split. As a result of this,

less number of Mappers are required. For processing images, current implementation of MIPr includes Java

Image Processing API.

3. Comparison: HIPI and MIPr

We have compared HIPI and MIPr both, theoretically and practically in order to analyze efficiency of both.

3.1 Practical Comparison

Fig- 3: Practical Comparison: HIPI and MIPr

Two different experiments; 1.6 GB image upload and GrayScale Conversion were conducted in order to analyze

performance of HIPI and MIPr. The experiments were conducted on Intel core-i7-4790 with 16 GB of RAM.

The results of the experiments shows that in both of the experiments, HIPI outperforms MIPr. Moreover, it was

observed that job with MIPr fails while running the experiments with larger size of data.

Vol-4 Issue-3 2018 IJARIIE-ISSN(O)-2395-4396

8766 www.ijariie.com 2320

3.2 Theoretical Comparison

Parameter HIPI MIPr

Input Format HibInputFormat BufferedImageInputFormat, CombineImageInputFormat

Output Format BinaryOutputFormat BufferedImageOutputFormat

Image Representation

Format

ByteImage, FloatImage,

RasterImage, RawImage

BufferedImage, Fimage, MBFImage

Solution to small file

problem

By combining several

small files in HIB

By use of CombineFileInputFormat

Support to OpenCV Yes Yes

Types of Images JPEG, PNG, PPM Unspecified (JPEG)

Writable

Implementation

OpenCVMatWritable BufferedImageWritable

RecordReader

Implementation

HIbRecordReader BufferedImageRecordReader

RecordWriter

Implementation

BinaryRecordWriter BufferedImageRecordWriter

Culling Yes No

4. Conclusion

After studying both the frameworks thoroughly, implementing the experiments and conducting the comparison

between HIPI and MIPr, we can conclude that HIPI outperforms MIPr in every aspect. Hence, to perform image

processing in Hadoop environment, HIPI should be preferred.

5. Acknowledgement

We are thankful to Shri T. P. Singh, Director, BISAG for providing infrastructure and encouragement to carry out

this project at BISAG.

6. References

[1] V. Mayer-Schonberger and K. Cukier, ¨ Big Data: A Revolution That Transforms How we Work, Live, and

Think. Houghton Mifflin Harcourt, 2012. (Chinese translated version by Y. Sheng and T. Zhou, Zhejiang Renmin

Press)

[2] https://hadoop.apache.org/

[3] Mehul Nalin Vora, "Hadoop-HBase for large-scale data," Proceedings of 2011 International Conference on

Computer Science and Network Technology, Harbin, 2011, pp. 601-605.

doi: 10.1109/ICCSNT.2011.6182030

[4] Janani.J and Kalaivani.K “Hadoop MapReduce using Cache for Big Data Processing”, International

Conference on Current Research in Engineering Science and Technology (ICCREST-2016)

pp. 31-37

Vol-4 Issue-3 2018 IJARIIE-ISSN(O)-2395-4396

8766 www.ijariie.com 2321

[5] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing on large

clusters. Commun. ACM 51, 1 (January 2008), 107-113. DOI: https://doi.org/10.1145/1327452.1327492

[6] L. Dong et al., "A Hierarchical Distributed Processing Framework for Big Image Data," in IEEE

Transactions on Big Data, vol. 2, no. 4, pp. 297-309, Dec. 1 2016. doi: 10.1109/TBDATA.2016.2613992

[7] http://blog.cloudera.com/blog/2009/02/the-small-files-problem/

[8] Vaibhav Gopal Korat, Kumar Swamy Pamu, " Reduction of Data at Namenode in HDFS using harballing T

echnique" International Journal of Advanced Research in Computer Engineering & Technology,Volume 1, Issue

4, June 2012

[9] S. Chris, L. Liu, A. Sean, and L. Jason, HIPI: A hadoop image processing interface for image-based map

reduce tasks, B.S. Thesis. University of Virginia, Department of Computer Science, 2011.

[10] A. Sozykin and T. Epanchintsev, "MIPr - a framework for distributed image processing using

Hadoop," 2015 9th International Conference on Application of Information and Communication Technologies

(AICT), Rostov on Don, 2015, pp. 35-39.

doi: 10.1109/ICAICT.2015.7338511

