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ABSTRACT 
Many times, we encounter with some system or process where it become complex to determine the correlation 

between the dependent and independent variables. Chemical engineering has many such examples where we can 

obtain the output values for predetermined values of input parameters, experimentally. But it is quite complex to 

develop a mathematical model which can map the behavior and interdependency of process or system parameters. 

Even sometimes it is not easy to find the solution of such mathematical models. It became time consuming because 

the complexity increases if the system is nonlinear and requires high level of technical expertise. For such system or 

process, ANN is getting the attention of the technical world. ANN basically is a computational technique that has the 

capability to model correlation between the process variables, input and output values. Traditional approaches have 

some limitation in solving chemical engineering problems, like modeling of highly complex nonlinear systems. 

Hence for such complexity, artificial neural networks (ANN) is found to solve complicated tasks in a variety of 

practical applications. In this article several applications of ANN in chemical engineering is discussed. 
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1. INTRODUCTION 

Work on the artificial neural networks, has been inspired right from its origin by the recognition that the human 

brain computes in a completely different manner from the conventional computing machine. The brain is extremely 

advanced, nonlinear, complex, and parallel computer. It has the potential to organize in structural constituents, 

known as neurons. So as to perform certain computations e.g. pattern recognition, perception and motor control. 

Many times faster than the fastest digital computer in the existence today. The idea of artificial neural network has 

been derived based on the functioning of brain. The definition for neural network can be given as: “A neural 

network is a massively parallel distributed processor made up of a simple processing units which has a natural 

propensity for storing experiential knowledge and making it available for use’’ [1]. It resembles the brain in two 

respect.  

1. Knowledge is acquired by the network from its environment through a learning process. 

2. Interneuron connections strengths, known as synaptic weights, are used to store the acquired knowledge. 

 

1.1 Network Architectures 

There are different types of network architectures that have been used for solving complex problems. They are 

discussed below: 

 

1.1.1 Simple ANN Model 

The basic structure of a single processing unit in an ANN as shown in Figure [1], which will be referred to as a node 

and is analogous to a single neuron in the human brain. A node receives one or more input signals, in which may 

come from other nodes or from some other source. Each input is weighted according to the value W j which is called 

a weight. These weights are similar to the synaptic strength between two connected neurons in the human brain. The 

weighted signals to the node are summed and the resulting signal is sent to a activation function, which can be any 

type of mathematical function, but is usually taken to be a simple bounded differentiable function such as the 

sigmoid. The resulting output of the node, may then be sent to one or more nodes as an input or taken as the output 

of an ANN model. 
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Figure-1: Simple ANN 

 

 

1.1.2 Feed-Forward Networks 

Feed-forward ANN allows signals to travel one way only from input to output. There is no feedback (loops) i.e. the 

output of any layer does not affect that same layer. Feed-forward ANN tends to be straight forward networks that 

associate inputs with outputs. They are extensively used in patter recognition. This type of organization is also 

referred to as bottom-up or top-down. 

 

1.1.3 Feed-Back Networks 

Feedback networks can have signals traveling in both directions by introducing loops in the network. Feedback 

networks are very powerful and can get extremely complicated. Feedback networks are dynamic, their state is 

changing continuously until they reach an equilibrium point. They remain at the equilibrium point until the input 

changes and a new equilibrium needs to be found. Feedback architectures are also referred to as interactive or 

recurrent, although the latter term is often used to denote feedback connections in single-layer organizations. 

 

1.2 Network Properties 

The topology of a neural network refers to its framework as well as its interconnection scheme. The framework is 

often specified by the number of layers and number of nodes per layer. Three types of layer include as shown in 

Figure [2]. 

Input layer: The nodes in it are called input units; the activity of the input layer represents the raw information that is 

fed into the network for processing.  

Hidden layer: The nodes in it are called hidden units, which ae not directly observable and hence hidden. They 

provide nonlinearities for the network.  

Output layer: The nodes in it are called output units, which encode possible concepts to be assigned to the instance 

under consideration.  

This simple type of network is interesting because the hidden units are free to construct their own representations of 

the inputs. The weights between the input and hidden units determine when each hidden unit is active. 

 

 
Figure -2: Artificial Neural Network with one hidden layer 
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1.3 Transfer Function 

The behavior of an ANN depends on both the weights and the input-output transfer function that is specified for the 

units. This function typically falls into one of three categories: 

• Linear 

• Sigmoid 

• Threshold 

For linear units, the output activity is proportional to the total weighted output.  

For sigmoid units, the output varies continuously but not linearly as the input changes. Sigmoid units bear a greater 

resemblance to real neurons than do linear or threshold units, but all three must be considered rough approximations. 

For threshold units, the output are set at one of two levels, depending on whether the total input is greater than or 

less than some threshold value.  

To make a neural network that performs some specific task, we must choose how the units are connected to one 

another and we must set the weights on the connections appropriately. The connections determine whether it is 

possible for one unit to influence another. The weights specify the strength of the influence. 

 

1.4 The Back-Propagation Algorithm 

In order to train a neural network to perform some task, we must adjust the weights of each unit in such a way that 

the error between the desired output and the actual output is reduced. This process requires that the neural network 

compute the error derivative of the weights (EW). In other words, it must calculate how the error changes as each 

weight is increased or decreased slightly. The back propagation algorithm is the most widely used method for 

determining the EW. 

 

2. ANN IN CHEMICAL ENGINEERING 
Artificial neural network is been used many field for predicting the output. Traditional approaches of solving 

chemical engineering problems frequently have their limitations, as for example in the modeling of highly complex 

and nonlinear systems. Artificial neural networks (ANN) have proved to be able to solve complex tasks in a number 

of practical applications. Here are several applications of ANN in chemical engineering.   

 

Juan [2] proposed an adaptive neural network control algorithm for a class of a two continuous stirred tank reactors 

with unknown functions. The neural networks are used to approximate the unknown functions. The reactor 

modelling has nonlinearity property and unknown function appear in each subsystem. This property results in the 

difficulties in the design. By designing a new back stepping method, the difficulties are avoided. The Lyapunov 

stability analysis proved that all the signals are bounded and the system output converges to a small neighborhood of 

zero. 

 

Valente et al. [3] used electrocoagulation to reduce the chemical oxygen demand of dairy industry effluent. The 

effects of operating parameters were evaluated, including the electric current density, initial effluent pH, electrolysis 

time and distance between electrodes. The characteristics of the effluent, namely, the solids content and its fractions, 

turbidity and chemical oxygen demand, were also considered. An artificial neural network was constructed to model 

chemical oxygen demand after electrocoagulation; it was trained and validated, yielding a correlation coefficient of 

0.96 between predicted and experimental values. Input variables were ranked by their relative importance for the 

prediction of chemical oxygen demand after treatment by electrocoagulation. Among effluent the total dissolved 

solids concentration had the greatest relative importance, followed by the chemical oxygen demand. It can be 

concluded that an artificial neural network can predict chemical oxygen demand after treatment by 

electrocoagulation. In practice, operating parameters may be adjusted to obtain a greater reduction of chemical 

oxygen demand and to allow automation of the handling process. 

 

Humberto et al. [4] studied, the automatic startup of a nuclear reactor subjected to period scram constraint is 

considered. To achieve this operation in a minimum time avoiding the difficulties associated with the application on-

line of maximum principle or dynamic programming, first the optimal trajectory is calculated off-line. Next, the 

nuclear plant considered as a black box is identified by a differential neural network. The structure provided by this 

neural identifier is fed back to follow the optimal trajectory. The modeling error is compensated by the usage of the 

power derivative. Thus, the asymptotic stability of the tracking error can be guaranteed. 
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Froio et al. [5] proposed artificial neural networks (ANNs) for the evaluation of the heat load to the cryoplant. First, 

two simplified thermal-hydraulic models for an ITER Toroidal Field (TF) magnet and for the ITER Central Solenoid 

(CS) are developed, based on ANNs, and a detailed analysis of the chosen networks’ topology and parameters is 

presented and discussed. The ANNs are then inserted into the 4C model of the ITER TF and CS cooling circuits, 

which also includes active controls to achieve a smoothing of the variation of the heat load to the cryoplant. The 

training of the ANNs is achieved using the results of full 4C simulations (including detailed models of the magnets) 

for conventional sigmoid-like waveforms of the drivers and the predictive capabilities of the ANN-based models in 

the case of actual ITER operating scenarios are demonstrated by comparison with the results of full 4C runs, both 

with and without active smoothing, in terms of both accuracy and computational time. Exploiting the low 

computational effort requested by the ANN-based models, a demonstrative optimization study has been finally 

carried out, with the aim of choosing among different smoothing strategies for the standard ITER plasma operation. 

 

Chang et al. [6] provided the simulated verification and validation of the hybrid neural-network rate-function 

(HNNRF) approach for modeling batch reactor systems. In chemical reactor processes, some measurements may not 

be easily obtainable, and the designed neural-network rate-function (NNRF) model in our previous work did not 

propose a method to include the state variables for the suggested dynamic model. To overcome this difficulty, the 

approximated mechanistic equations characterizing these immeasurable state variables could be incorporated into 

the NNRF model to form the hybrid neural-network rate-function model. The sequential pseudo-uniform design 

(SPUD) is used to locate the sufficient but limited experiments to provide the HNNRF model with rich information. 

In this research, the HNNRF modeling capability over a large operating region was evaluated employing a simulated 

polymerization reactor system. In addition to the comparative benefit of short time expenditure for building the 

model, the performance of the identified HNNRF model is quite acceptable in the face of noisy measurements and 

the identified model could be applied to determine the optimal recipe or the operating conditions of the reactor 

systems. 

 

Dirion et al. [7] developed a neural controller to regulate the temperature in a semi-batch pilot-plant reactor. The 

experimental unit employs a monofluid heating-cooling system to raise the reactor to the operating temperature, and 

then remove the heat generated by an exothermic reaction. Preliminary experiments form the neural-network 

learning database. These involve regulation of the reactor by either an advanced control algorithm or by operator 

(manual control). The results suggest that such neural controllers can provide excellent set point-tracking and 

disturbance rejection.  

 

Giwa et al. [8] in their work, a new configuration of an electrically-enhanced membrane bioreactor has been 

introduced to treat medium strength wastewater. The integrated setup enhanced the reduction of wastewater 

contaminant concentrations. The investigated components in this study were chemical oxygen demand (COD), 

orthophosphates (PO4
3−

-P) and ammonium (NH4
+
-N). The percentages of COD, PO4

3−
-P, and NH4

+
-N removal 

obtained were 98, 99, and 98%, respectively. Variation in environmental compositions such as mixed liquor 

dissolved oxygen (DO), volatile suspended solids (MLVSS), pH, and electrical conductivity influenced the effluent 

concentration of wastewater components. Artificial neural networks (ANNs) based ensemble model was used to 

model the experimental findings of COD, PO4
3−

-P and NH4
+
-N removal given the initial mixed liquor compositions. 

Comparison between the model results and experimental data set gave high correlation coefficients for COD(r = 

0.9942 PO4
3−

-P (r = 0.9998) and NH4
+
-N (r = 0.9955). 

 

 Molga and Cherbanski [9] has done a detailed investigations have been carried out to check the ability of multilayer 

neural networks to model the simultaneous mass transfer and chemical reaction in the liquid-liquid reacting system. 

In this approach the intrinsic reaction kinetics and diffusive mass transfer are represented by a black-box and only 

the input-output signals are analyzed. The data for training of the net have been taken from the experiments 

performed in a RC1 Mettler Toledo reaction calorimeter. The hydrolysis of propionic anhydrite catalyzed with 

sulphuric acid has been chosen as a testing reaction. The hybrid, first-principle-neural-network model has been 

defined to describe batch and semi batch stirred tank reactors operating at different conditions. Good accuracy and 

flexibility of the proposed approach have been obtained for a properly defined experimental programme supplying 

data for learning. 

 

Yang [10] studied three different approaches for modelling a semi-batch polymerization reactor using artificial 

neural networks (ANN). Based on the characteristics of the semi-batch reactor a multi-stage strategy is 

recommended. It divides the whole reaction process into two periods, semi-batch and batch, and further divides the 
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semi-batch part into two sub-periods that are before and after the maximum temperature is reached. Different ANN 

architectures are used to model the three parts separately. The results demonstrate that the multi-stage approach 

proposed can be used to estimate difficult-to-measure polymer variables with acceptable accuracy for semi-batch 

processes. Concentrations of the monomer and the initiator in the reactor are estimated from reactor temperature, 

feed temperature and the concentration of the initiator in the feed. 

 

Li and Li [11] showed that the intensified continuous reactor was designed to replace conventional batch reactor for 

three-phase catalytic slurry hydrogenation. The control of intensified continuous reactor imposes difficulties due to 

complex three-phase reaction kinetics, inherent process nonlinearities and stringent temperature limitation. In this 

work, two nonlinear model predictive control (NMPC) algorithms based on neural networks are proposed and 

implemented for the intensified continuous reactor. One is the NMPC with nonlinear optimization that is solved by 

sequential quadratic programming (SQP). The other is the NMPC with local linearization that is applied at each 

sample instant, a linear model with parameter varying is obtained and the optimization in NMPC can be written as a 

quadratic programming (QP) problem like linear MPC. Simulations results show that the NMPC with local 

linearization presents satisfactory performance. 

 

Messai [12] studied a detailed method for fault detection of an in-core three wires Resistance Temperature Detectors 

(RTD) sensor is introduced. The method is mainly based on the dependence of the fuel rod temperature profile on 

control rods elevation and coolant flow rate in a given nuclear reactor. For the implementation, an artificial neural 

network (ANN) technique has been developed to model the dynamic behavior of the considered temperature sensor. 

In order to have more refined model estimation, ANN has been combined with additional noise reduction 

algorithms. The effective de-noising work was done via the discrete wavelet transform (DWT) to remove various 

kinds of artefacts such as inherent measurement noise. The principle of the adopted fault detection task is based on 

the calculation of the difference between the ANN model estimated temperature and the online being measured 

temperature and then compare the deviation with a certain detection threshold to decide the sensor fault. The 

efficiency of the method is evaluated first on a simulated case and then on the on-line measurements obtained from a 

real plant. Results confirm the capacity of the developed ANN-based model to estimate a fuel rod temperature with a 

reasonable accuracy.  

 

Mazrou [13] finds a new methodology of a suitable artificial neural network architecture which improves its 

performances capabilities in predicting two significant parameters in safety assessment i.e. the multiplication factor 

keff and the fuel powers peaks Pmax of the benchmark 10MW IAEALEU core research reactor. The performances 

under consideration were the improvement of network predictions during the validation process and the speed up of 

computational time during the training phase. Consequently, the speed up of several popular algorithms has been 

assessed during the training process. The comprehensive neural system was subsequently trained on different 

transfer functions, number of hidden neurons, levels of error and size of generalization corpus. Thus, using a 

personal computer with data created from preceding work, the final results obtained for the treated benchmark were 

improved in both network generalization phase and much more in computational time during the training process in 

comparison to the results obtained previously. 

 

Hernandez et al. [14] proposed a neural networks state observer to estimate biomass, substrate and methane in a 

continuous anaerobic reactor is introduced in this paper. The observer is designed from a recurrent high order neural 

network with a hyperbolic tangent as activation function and an extended Kalman filter as learning algorithm. The 

observer structure is validated via simulations and using experimental data obtained from an anaerobic continuous 

stirred tank at lab scale. This prototype is used to treat real slaughterhouse wastewater and it is operated in 

continuous mode. The obtained results show that the proposed observer is able to reproduce adequately the 

biomethane production and the substrate (related to chemical oxygen demand) in the methanogenesis stage; besides, 

methanogenic bacteria are also well estimated but some modifications are required in order to reach better results.  

 

Basile et al. [15] presents a theoretical approach via artificial neural networks model for studying the water gas shift 

reaction in hydrogen selective membrane reactors, based on an experimental campaign useful for training the 

aforementioned model. In particular, parameters such as the reaction pressure, reaction temperature, gas hourly 

space velocity (GHSV), sweep gas flow rate, H2O/CO feed molar ratio and feed have been considered from both a 

modeling and an experimental point of view in order to analyze their influence on the water gas shift performance 

(in terms of CO conversion, hydrogen recovery, hydrogen permeate purity) in two membrane reactors, allocating 

dense Pd-Ag membranes, having different active membrane surface areas. As best experimental results, by using a 
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Cu-Zn based catalyst and co-current configuration of sweep gas, CO conversion around 100% and H2 recovery of 

about 70% were reached. Meanwhile, the artificial neural networks model has been validated by using part of the 

experimental tests as training values and, then, it was used for optimizing the system to achieve as much as possible 

high hydrogen recovery. The model predicted the experimental performance of the water gas shift membrane 

reactors with an error on CO conversion lower than 0.5% and around 10% for the H2 recovery over the 

experimental tests not used during the model training. 

 

 

3. CONCLUSION 
The computing world has a lot to gain from neural networks. Their ability to learn from the previous example makes 

them very flexible and powerful. Furthermore there is no need to devise an algorithm in order to perform a specific 

task. ANN is also suited for real time systems because of their response and computational times are due to their 

parallel architecture. By using ANN, the computation time requirement is decreases and it become easy to predict 

the final results.  From above discussion we can say that ANN can be used in chemical engineering field instead of 

other rigorous techniques. 
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