Approximation of continuous real valued functions

S.JAYASUDHA prince shrivenkateshwara padmavathy engineering college
C.VENNIA prince shrivenkateshwara padmavathy engineering college
C.VENNIA prince shrivenkateshwara padmavathy engineering college
R.Rajalakshmi prince shrivenkateshwara padmavathy engineering college

ABSTRACT

The aim of the article is to trace with some details the history of approximation of functions in \(C[a,b] \) beginning with Weierstrass and the constructive theory initiated by Bernstein.

Key words: Supremum norm, metric space, Banach space, sequence of polynomials, normed linear space.

Introduction:

Weierstrass in 1985 showed that a continuous real function defined on a compact interval can be approximated uniformly to any desired extent by a polynomial. Bernstein later showed that knowing the desired nearness of the polynomial to a function one could construct it. If \([a,b]\) is the compact interval and \(C[a,b]\) is the space of all continues functions on \([a,b]\) and \(P\) the space of all polynomials with real coefficients, then \(P\) is a dense linear subspace of the Banach space \(C[a,b]\) with the norm

\[
\| f \| = \sup_{a \leq x \leq b} |f(x)|, f \in C[a,b]
\]

In other words, given an \(f \in C[a,b]\), there exists for every \(\varepsilon > 0\), a \(p \in P\) which is near to \(f\) by less than \(\varepsilon\).

Weierstrass theorem:

Let \(f\) be in \(C[a,b]\). Then given \(\varepsilon > 0\), there exist a polynomial \(p\) such that

\[
|f(x) - p(x)| < \varepsilon, (a \leq x \leq b) \quad \text{--------} \quad (1)
\]

Remark:

\(C[a,b]\) is a complete metric space with metric \(\rho\) defined by

\[
\rho(f, g) = \|f - g\|, \quad (f, g \in C[a,b]) \quad \text{--------} \quad (2)
\]

Where \(\|\cdot\|\) is called the supremum norm of \(f\) defined by

\[
\| f \| = \max_{a \leq x \leq b} |f(x)| \quad \text{--------} \quad (3)
\]

(1) Is equivalent to the statement

There exists a sequence \(\{p_n\} \in P\) such that \(p_n\) converges to \(f\) uniformly on \([a,b]\).

(i.e) If \(p_n\) is chosen such that

\[
|f(x) - p_n(x)| < \frac{\varepsilon}{n}, (a \leq x \leq b) \quad \text{--------} \quad (4)
\]

where \(n\) is a positive integer such that \(\frac{\varepsilon}{n} < \varepsilon\).
\[|f(x) - p_n(x)| < \frac{1}{n}, \ a \leq x \leq b, \text{ then } p_n \rightarrow f \text{ uniformly on } [a,b] \]

Conversely if \(\varepsilon > 0 \) is given, we need to choose \(n \) with \(\frac{1}{n} < \varepsilon \), a \(p_{n_0} \) with

\[|f(x) - p_{n_0}(x)| < \frac{1}{n} \]

Thus the theorem can be restated depending on the context.

Bernstein Proof of the theorem:

Take \(a=0, b=1 \)

Let \([a,b]\) be any closed bounded interval.

Let \(f \in C[a,b] \)

Let \(g(x) = f[a+(b-a)x], 0 \leq x \leq 1 \)

Now \(g(0) = f(a), f(1) = f(b). \)

Clearly \(g \in C[0,1] \)

Hence there exists a polynomial \(Q \) such that \(|g(y) - Q(y)| < \varepsilon, 0 \leq y \leq 1 \)

If \(y = \frac{x-a}{b-a} \), then

\[g(y) = g \left(\frac{x-a}{b-a} \right) \]

\[= f \left(a + (b-a) \left(\frac{x-a}{b-a} \right) \right) = f(x) \]

Thus \(|f(x) - Q \left(\frac{x-a}{b-a} \right)| < \varepsilon, a \leq x \leq b \quad \rightarrow (4) \)

If \(p(x) = Q \left(\frac{x-a}{b-a} \right) \), then \(p \) is a polynomial as \(Q \) is a polynomial consider \(C[0,1] \).

For any \(f \in C[0,1] \) we define a sequence of polynomials \(B_n, n=1,2, \ldots \), as follows.

\[B_n(x) = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} f \left(\frac{k}{n} \right), 0 \leq x \leq 1 \quad \rightarrow (5) \]

Where \(\binom{n}{k} \) represents the number of \(k \) combinations out of \(n \).

\(B_n \) is called the \(n^{th} \) Bernstein polynomial for \(f \).

Given \(\varepsilon > 0 \), we show that there exists \(n \in N \) such that

\[\| f - B_n \| < \varepsilon \quad (n \leq N) \]

For any \(p, q \in R \), by Binomial theorem
\[
\sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k} = (p + q)^n, \quad n \in N \quad \rightarrow (6)
\]

Differentiate with respect to \(p \) we get
\[
\sum_{k=0}^{n} k \binom{n}{k} p^{k-1} q^{n-k} = n (p + q)^{n-1},
\]
\[
\sum_{k=0}^{n} \frac{k}{n} \binom{n}{k} p^{k-1} q^{n-k} = p (p + q)^{n-1}, \quad \rightarrow (7)
\]

Differentiate again with respect to \(p \),
\[
\sum_{k=0}^{n} \frac{k^2}{n(1-x)^{n-k}} \binom{n}{k} p^{k-1} q^{n-k} = \frac{p(1-x)^{n-k}}{n} + \frac{p}{n} (p + q)^{n-1} \quad \rightarrow (8)
\]

Sub \(p=x, \quad q=1-x, \quad 0<x<1 \)

Then (6), (7) & (8) becomes
\[
\sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} = 1
\]
\[
\sum_{k=0}^{n} \left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k} = x
\]
\[
\sum_{k=0}^{n} \left(\frac{k^2}{n^2}\right) \binom{n}{k} x^k (1-x)^{n-k} = x^2 \left(1 - \frac{1}{n}\right) + \frac{x}{n} \quad \rightarrow (9)
\]

From (9) we have
\[
\sum_{k=0}^{n} \left(\frac{k}{n}-x\right)^2 \binom{n}{k} x^k (1-x)^{n-k} = \sum_{k=0}^{n} \left(\frac{k^2}{n^2}\right) \binom{n}{k} x^k (1-x)^{n-k} - 2x \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} + x^2 \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k}
\]
\[
= x^2 - \frac{x^2}{n} + \frac{x}{n} - 2x(x) + x^2
\]
\[
= \frac{x(1-x)}{n}
\]
\[
\sum_{k=0}^{n} \left(\frac{k}{n}-x\right)^2 \binom{n}{k} x^k (1-x)^{n-k} = \left(\frac{x(1-x)}{n}\right) \quad \rightarrow (10)
\]

Now \(f \in C[0,1] \) is uniformly continuous on the compact interval \([0,1]\).
Hence given \(\varepsilon>0 \), there exists \(\delta>0 \)
Such that \(|f(x)-f(y)|<\varepsilon/2 \), Whenever
\[|x-y|<\delta, \quad x, y \in [0,1]\]
Assuming $||f|| \neq 0$, we have N such that
\[\frac{1}{\sqrt{N}} < \delta \quad \Rightarrow (11) \]
\[\frac{1}{\sqrt{N}} < \frac{\varepsilon}{4||f||} \quad \Rightarrow (12) \]

For fixed $x \in [0,1]$ we have
\[
f(x) - B_n(x) = \sum_{k=0}^{n} f\left(x - \frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}
\]
\[= \sum \text{'} + \sum \text{''} \quad \Rightarrow (13)\]

Where $\sum \text{'}$ is the sum over the values of k such that
\[|\frac{k}{n} - x| < \frac{1}{\sqrt{n}} \quad \Rightarrow (14)\]

And $\sum \text{''}$ is the sum over the other values of k for which
\[|\frac{k}{n} - x| < \frac{1}{\sqrt{n}}\]
\[(k-nx)^2 = n^2 |\frac{k}{n} - x|^2 \geq \sqrt{n^3}\]

Hence $|\sum \text{'}| = |\sum \text{'} f(x) - f\left(x - \frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}|
\leq \sum \text{'} |f(x)| + |f\left(x - \frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}|
\leq 2||f|| \sum \text{'} \binom{n}{k} x^k (1-x)^{n-k}|
\leq 2||f|| \sum_{k=0}^{n} (k-nx)^2 \binom{n}{k} x^k (1-x)^{n-k}\]
\[\leq 2||f|| \frac{\varepsilon}{\sqrt{n^3}} \sum_{k=0}^{n} (k-nx)^2 \binom{n}{k} x^k (1-x)^{n-k}\]
\[\leq 2||f|| \frac{\varepsilon}{\sqrt{n^3}} \sum_{k=0}^{n} (k-nx)^2 \binom{n}{k} x^k (1-x)^{n-k}\]
\[\Rightarrow |\sum \text{'}| \leq 2||f|| \frac{\varepsilon}{\sqrt{n^3}} (1-x) \leq \frac{2||f||}{\sqrt{n}}\]

If $n \geq N$ it follows from (12) that
\[\frac{1}{\sqrt{n}} < \frac{\varepsilon}{4||f||} \quad \text{and so}\]
\[\left| \sum | \sum [f(x) - f\left(\frac{k}{n}\right)] \right| \leq \varepsilon \]

Moreover if \(n \geq N \) and if \(k \) refer(14) then by (11), \(\left| \frac{k}{n} - x \right| \leq \frac{1}{\sqrt{N}} \) and so

\[|f(x) - f\left(\frac{k}{n}\right)| \leq \frac{\varepsilon}{2} \]

\[\left| \sum | \sum [(f(x) - f\left(\frac{k}{n}\right)] \right| \frac{n}{k} x^k (1 - x)^{n-k} \]

\[\leq \frac{\varepsilon}{2} \sum \left(\frac{n}{k} \right) x^k (1 - x)^{n-k} \]

\[\leq \frac{\varepsilon}{2} \text{ by (9)} \]

Hence \(|f(x) - B_n(x)| \leq \varepsilon \]

\[\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \]

Conclusion:

The aim of the article is to express how a classical notation has given rise to rich abstractions.

References:

1. Lorentz C.G. “Approximation of Functions “, Newyork, 1966