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ABSTRACT 

 
In the steel rolling industry, the continuous furnace is the largest energy consumer object and has the most 

complex dynamics. By making discrete for spatial variable, a nonlinear distributed parameter system is transformed 

into ordinary differential equations by using finite element method (FEM).  The author also provided proof of model 

equivalence between continuous and static furnaces in specific modes to facilitate model testing. Simulation and 

experimental results performed on a static furnace have proven the correctness for the proposed method, the 

appropriateness to object of study and the capability for applying to metal burning process which is before the final 

processing stages such as rolling, forging, shaping etc.  
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1. INTRODUCTION  

 The object of research in the article is a metal furnace. This is a complex control problem for a system that 

consumes a lot of energy, so it has attracted the attention of many scientists around the world. The results 

achieved[1, 2] using the linear laplace transform and nonlinear programming method, the optimal solution algorithm 

(uDEAS) also only considers the case of temperature conductivity coefficient is a constant. In cases where the 

nonlinearity of the coefficient a in some steel grades is significant. It is very difficult to design advanced controllers 

to ensure the technical requirements for steel rolling technology and often cannot respond. Therefore, the 

contribution of this article is to supplement the above limited problems: It is the use of the finite element method to 

approximate the distributed parameter system (taking into account the nonlinear of the thermal conductivity 

coefficient) nonlinearity a(Q)) to convert the system to a centralized system with allowable errors [3, 4] to develop a 

model  that may predict the temperature distribution within the steel billet during heating. This step reduces the 

complexity of the model, bringing applicability high in practice while still ensuring the necessary accuracy. 
 

 

2. THE OBJECT MODEL [5, 6, 7] 

 

Burning metal in furnace is a continuous process, where materials are conveyed through some heat areas in 

succession. Steel slabs are directed by pushing motors and moved from low temperature area to high temperature 

one in the furnace space. They move through different temperature zones along the furnace.  
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   Fig.1. Geometry of the model continuous reheating furnace.  

 

 This kind of motion is the same as the case that slabs are kept immobile but temperature varies in time. 

Thus, a static heating furnace can be used in place of a continuous reheating furnace for experimental purposes, such 

as testing model to calculate the temperature distribution of the object. Therefore, this process is similar to the 

moving of slabs in the continuous reheating furnace. The static furnace considered as a one-sided heat transfer 

system is described by the parabolic-type partial differential equation, as follows in (1) 
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 where Q(x, t), the temperature distribution in the slab, depending on the spatial coordinate x with 0  x  

L and the time t with 0 ≤ t ≤  tf,  a is the temperature-conducting factor (m2/s), δ is the thickness of object in the x 

direction (m), T is the allowed burning time (s), Where , a,  and u(t) are the heat-conducting factor, temperature  

conductivity factor,  the as the heat-transfer coefficient between the furnace space and the object (W/m2.oC) and u(t) 

as the temperature of the furnace respectively (oC).  

  

 The initial condition (2) and the boundary conditions (3), (4).The temperature u(t) of the furnace is 

controlled by voltage v(t). Therefore, the temperature distribution Q(x, t) will depend on voltage u(t). 

     The relationship between the provided voltage for the furnace u(t) and the temperature of the furnace v(t) 

is usually the first order inertia system with time delay as the following equation in (5). 

   
. ( ) ( ) ( )T u t u t k v t + = − .

      (5) 

 Where, T is the time constant,  is the time delay;    k is the static transfer coefficient; u(t) is the 

temperature of the furnace and v(t) is the provided voltage for the furnace.  

 

 

3. MODEL TO CALCULATE THE TEMPERATURE DISTRIBUTION OF THE OBJECT [3, 4] 
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The equations (1), (2), (3) is drawn from the condition (δJ = 0). Equations (1), (2), (3) are also used in the 

corresponding variational problem: find Q(x,t) such that the functional:    
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                                  Fig. 2.  

 

Segment the space [0, δ] by partition x1…xe+1 (Fig. 2). The corresponding time functions at the partition 

points are: Q1(x1, t) = Q1(t)…Qe+1(xe+1, t) = Qe+1(t); Finding the extremum of the function J is replaced by finding the 

extremum of this function approximating the function by approximating the integral by replacing Q(x, t) by the sum 

of a finite number consisting of e+1 function Qk(x, t), 1,k e=  in elements xi, xj ( 1 1, ;i e j i= = + )and consider the 

temperature function Qk in elements xi, xj to be linear (Fig. 2).  

Specifically, we have the function approximation: 
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kQ  of element k :   

 

 (0, ) ( ) (0, )
Q

t u t Q t
x






− = −


 

Q 

Hình 2  

x 
x1 x2 xi xj xBe+1  

Q1 Q2 

Qi 

Qj 

Qe+1  

Q
1 

Q2 
Q

k 
Q

e 

* * 
* 

* 

QT 

Q0 

δ 

* 

 

 



Vol-10 Issue-3 2024  IJARIIE-ISSN(O)-2395-4396 
 

24184 www.ijariie.com 4506 

( )
2

0 1 2

k k k k k ka a a Q a Q= + +
 

   The average temperature conductivity coefficient at each time t of element k or (xi, xj) is: 
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Transform (11) to get the system of nonlinear differential equations:                       
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 Where c is the specific heat of the calcined object, C is the heat capacity matrix:  
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 A(Q) is the temperature conductivity matrix: 
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4. SIMULATION AND EXPERIMENTAL RESULTS DISCUSSION [8, 10, 11] 

 
Burning metal in furnace is a continuous process, where materials are conveyed through some heat areas in 

succession. Steel slabs are directed by pushing motors and moved from low temperature area to high temperature 

one in the furnace space.  They move through different temperature zones along the furnace. This kind of motion is 
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the same as the case that slabs are kept immobile but temperature varies in time. Thus, a static reheating furnace can 

be used in place of a continuous reheating furnace for experimental purposes, such as testing model to calculate the 

temperature distribution of the object. Therefore, this process is similar to the moving of slabs in the continuous 

reheating furnace. 

In conditions a continuous furnace has not for testing, we can replace it with a static furnace. First, the 

static furnace can arrange the firing slab so that it can have a firing model similar to one in the continuous furnace.  
The first is bio standards. 

The second is the temperature field in the furnace. 

 As mentioned above, for slabs heated in a continuous furnace, for example, for a steel billet with a 

thickness of δ = 20cm, the thermal conductivity of the steel is an average  = 30 and the heat exchange coefficient in 

the firing zone is =300.  

. 300.0,2
2

30
iB

 


= = =  

We can calculate the bio standard: Hence, the flat-slab of steel is a thick object because the coefficient Bi > 

0.5 

To implement the temperature distribution model mentioned in the previous section, in the absence of a real 

continuous furnace, we use a static furnace, in a static furnace the billet does not move. We can replace the heat 

regime in a continuous furnace by subjecting the slabs to different temperatures over time (similarly, the billet in 

a furnace continuously moves through different temperature ranges). Regarding the billet, to ensure 

similarity in the model of the heat in the furnace, we use a slab of Diatomite (δ = 2cm, , = 0,2 and =20) 

that can calculate the bio standard. 

. 20.0,02
2

0,2
iB

 


= = =  

Based on Bi standards, the diatomite billet used has the same thickness as the steel billet mentioned in the 

continuous furnace. Thus, the experiment of controlling the temperature of the billet in the continuous furnace is 

converted to the temperature control experiment of the slab in the resistance chamber furnace. The temperature 

variation according to the layers of the fired billet (diatomite sample) also reflects the temperature change of the 

billet in the continuous furnace. 
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                                                                   Fig.3. Diatomite sample furnace experimental system. 

 

4.1.  The temperature distribution simulation for a slab when knowing the furnace temperature. 

 

The system uses NI USB-6008 interface card to output the voltage signal to the furnace control and collects the 

temperature signal in the furnace.  The voltage passed from the computer to the NI card, through the DAC to the 

voltage converter, thereby changing the voltage supplied to the furnace. The  temperature  in  the  furnace  is  

measured  by  the thermocouples XA (Cromen-Alumen) or NiG-Ni with temperature range (0-1000oC) output 

voltage (0-40mV) , after via the standardization kit is also taken to the NI Card, which converts into digital  signals  

and  sends  temperature  data  to computer for the identification of the  resistor furnace model: 

 

 
Fig.4 Block diagram of experimental setup 
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                              Figure 5 Simulink block diagram for object recognition 
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                                             Figure 6 Characteristics of furnace sampling values 

 

The signal from the thermocouple placed in the furnace and at the center of the slab is amplified and read to Matlab 

through pins AI0 and AI2 of Card 6008 and saved in Workspace. The identification method here is to use the 

System Identification Tool function (ident) included in Matlab. We get the transfer function form: 

 

450 578

452 1

−=
+( )

. s

S
G e

s
     (20) 

 

We conduct an experiment for a Diatomite sample with the following parameters: 

 

• The physical parameters of the object 

- The thickness of object: δ = 2 (cm), density ρ = 680kg/m3 

- The heat-transfer factor:  = 20 (W/m2. 0C), specific heat c = 0,837kJ/KgoC 

- The heat-conducting factor: = 0.2(W/m. 0C)  

- The temperature-conducting factor: a=4.8*e-7 (m2/s)  

-  

• The parameters of the furnace 

-  The time constant of the furnace: T = 452 (s) 
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-  The delayed time of the furnace:  = 45 (s) 

•   The period of heating time: tf = 4200 (s) 

•  Limit the temperature of furnace: u(t) ≤ 5000C 

•  Limit the temperature of flat-slab surface: Q(0,t ) ≤ 600 0C 

•  Limit under voltage: v1=0 (V) 

• Limit upper voltage: v2=205 (V) 

 

With these parameters, the coefficient Bi is calculated as follows: 

. / 20.0,02 / 0.2 2Bi   = = =  

Hence, the flat-slab of Diatomite is a thick object because the coefficient Bi > 0.5.       

Experimental result as shown in Figure 7 

 

 
           Fig. 7 The temperature curve of the calculated model is close to the real temperature one 

 

Select the heat transfer coefficients, after that run the simulation until the calculated temperature given by the 

model is equal to the actual measured temperature, then we can determine the actual heat transfer coefficient. 

The slab temperature in temperature distribution model approximates the real temperature. The actual surface 

and middle layer temperatures are measured by two thermocouples. 

Figure 7 shows that, at time t = 7000s, the temperature distribution of the central layers in the Q3 is 

approximately 360oC, the deviation from the distribution model temperature is small, which proves that the 

distribution model temperature meets the control requirements for the system.  

 

4.2.  Applying the temperature calculation model to the actual heating process. 
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In short, the above model is used to obtain information about the temperature of the billet fired in a continuous 

furnace. The model is responsible for calculating the average temperature of the object when knowing the 

temperature of the air in the furnace, or calculating the furnace temperature distribution according to the required 

temperature diagram of the fired slab given. 

 

 

5. CONCLUSIONS  
 

The article has built the fastest and most accurate heating control algorithm for heat objects by converting 

the distributed system model to a centralized system. The simulation results have demonstrated the correctness of 

the research method that can be applied to control metal smelting processes in industry for both static and dynamic 

furnaces in the fast response sintering mode (fastest sintering problem) to compensate for productivity loss during 

rolling mill delays and in working modes with different constant productivity (the most accurate calcination 

problem). The application of the above algorithms to control the kiln system in synchronization with the rolling mill 

when there is interference while still ensuring the goals of productivity, product quality and fuel saving will be 

presented in the article next. 
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