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Abstract: Terahertz (THz) multiple-input multiple-output (MIMO) is becoming a promising technology for future 

6G network, where using beam tracking scheme to track mobile users is essential. However, existing beam 

tracking schemes designed for narrowband systems with the traditional hybrid precoding structure suffer from 

severe performance loss caused by the wideband beam split effect. To solve this problem, we propose a beam 

zooming based beam tracking scheme by considering the recently proposed delay-phase precoding structure. At 

first, we prove the beam zooming mechanism to flexibly control the angular coverage of frequency-dependent 

beams over the whole bandwidth, i.e., the degree of the wideband beam split effect, which is achieved by the 

elaborate design of time delays in the delay-phase precoding structure. Based on this mechanism, we then propose 

to track multiple physical directions in each time slot by generating multiple beams. The angular coverage of 

these beams are flexibly zoomed to match the angular variation range of user physical direction. After several 

time slots, the base station can obtain the new physical direction by finding out the beam with the largest received 

power. The proposed scheme can track multiple physical directions simultaneously with reduced training 

overhead, which is verified by simulation results. 

Keywords: THz: massive MIMO: beam tracking. 

 

1. INTRODUCTION 

Over several decades, the amount of wireless voice and data communications has demonstrated potential 

development, which is referred to as Cooper’s law. In the 1990s, wireless researcher Martin Cooper (Cooper, M. 

(2010)) observed that the number of voice and data connections had doubled every two and a half years since 

Guglielmo Marconi’s initial wireless transmissions in 1895, and it accounts for 32% of yearly growth rate. In the 

future, the Ericsson Mobility Report predicts a 42 percent annual growth rate in mobile data traffic from 2016 to 

2022, which is faster than Cooper’s law. Without a doubt, the need for wireless data communication will continue 

to rise in the near future; For example, video fidelity is always improving, and whole new essential services are 

on the horizon. All electronic gadgets in a networked world are connected to the Internet. All electronic gadgets 

are connected to the Internet in today’s networked world. However, the main problem here is to improve current 

wireless communication technologies in order to meet the ever-increasing demand and, as a result, prevent a data 

traffic congestion. Another significant problem is to meet the growing demand for high quality services. 

Customers want wireless services to integrate seamlessly with a reliable and always accessible energy grid at all 

times and in all places. Due to the need to compete with an epidemic rate of traffic growth and provide ubiquitous 

connection, academia and industry researchers are compelled to use every available resource to develop new 

revolutionary wireless network technologies. This study confirmed that an in-depth assessment of cellular 

communication network area throughput was conducted, as well as a solution to fulfil future network demand. 

The International Tele-communication Union (ITU) has initiated an official research investigation into 6G 

technology. The goal is to develop advanced wireless networks and establish self-sustaining systems. The 

emergence of services and applications such as augmented reality and holographic communications, as well as 

the transmission of extremely high-definition videos, requires the use of Tera-Hertz (THz) communication as a 

foundation for future 6G networks. Additionally, 6G aims to offer reduced latency and ultra-high reliability for 

long-distance communication. The THz band, which spans from 0.  THz to 10 THz, provides a substantial amount 

of bandwidth, enabling ultra-high data rates. Many experts anticipate that 6G will deliver comprehensive coverage 

and unlimited wireless connectivity. 

Terahertz (THz) massive multiple-input multiple-output (MIMO) is considered as a promising technology for 

future 6G network [1]. It can provide tenfold more bandwidth, and compensate for the severe path loss through 

high-array-gain beams. Nevertheless, traditional hybrid precoding structure in massive MIMO cannot deal with 

the beam split effect caused by the vary large bandwidth and a very large number of antennas [2], [3]. Specifically, 

the beam split effect means the beams generated by the traditional frequency-independent phase-shifters (PSs) 

may split into different physical directions over different subcarriers within the large bandwidth, which results in 
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a serious array gain loss and thus an achievable sum-rate loss. To solve this problem, we have proposed the delay-

phase precoding structure by introducing a time delay network as a new precoding layer, which can mitigate the 

array gain loss caused by the beam split effect [3]. 

Considering that the THz channel is quasi-optical with a single dominant path [4], the beam selection based hybrid 

precoding method, which chooses the beam with the highest array gain for each user, is able to achieve the near-

optimal achievable sum-rate [5]. To realize the beam selection, the channel information is essential. However, it 

is difficult for the base station (BS) to obtain the accurate channel information of large size in THz massive MIMO 

systems. More seriously due to the narrow width of high-array-gain beams, the optimal beam varies fast due to 

the user mobility. Hence, traditional channel estimation schemes will result in high training overhead in THz 

massive MIMO systems [6]. To avoid such high training overhead, the efficient beam tracking schemes are more 

practical for THz massive MIMO systems [7]–[9]. 

Terahertz (THz) communication is considered as one of the promising technologies for future 6G wireless 

communications, since it can provide tens of GHz bandwidth to support ultra-high data rates. However, THz 

signals suffer from the severe path loss due to the high carrier frequencies. To compensate for the severe path 

loss, massive multiple-input multiple-output (MIMO), which can generate directional beams with high array 

gains, is considered promising to be integrated in future THz communications. Nevertheless, the widely 

considered hybrid precoding structure in massive MIMO [10] cannot deal with the beam split effect caused by the 

wide bandwidth and a large number of antennas in THz massive MIMO systems [11]. Specifically, the beam split 

effect can be seen as a serious situation of the widely known beam squint [12], [13], which means that the beams 

generated by the traditional frequency-independent phase-shifters (PSs) may be totally split into different physical 

directions over different subcarriers within the large frequency band. Consequently, these beams over different 

subcarriers cannot be aligned with the target user in a certain direction, which leads to a serious array gain loss 

and thus an obvious achievable sum-rate loss. To solve this problem, introducing time-delayers into precoding 

structure, such as true-time-delay array [14]–[16], array-of-sub array structure [17], and delay phase precoding 

structure [18], is considered to be promising. Thanks to the frequency-dependent phase shifts provided by time-

delayers, these precoding structures can significantly mitigate 

the array gain loss caused by the beam split effect. To realize precoding, accurate channel information is essential. 

Generally, the channel information can be obtained through channel estimation. However, because of the large 

size of channel information, traditional channel estimation schemes will result in an unacceptable channel 

estimation overhead in THz massive MIMO systems [19]. To avoid such an unacceptable overhead, the beam 

training scheme is preferred. Instead of estimating full channel information of large size, the beam training scheme 

directly estimates the physical directions of channel paths [20], which is realized by using directional beams 

through a training procedure between the base station (BS) and users. Thanks to the quasi-optical characteristic 

of THz channel [21] and the accurate physical directions obtained by beam training, the beam selection based 

precoding 

method is able to achieve the near-optimal achievable sum rate when users are quasi-static [22]–[24]. 

Unfortunately, the beam training scheme suffers from a high training overhead when users are moving. 

Specifically, since the optimal beam of a moving user varies fast due to the narrow beam width, the beam training 

procedure has to be carried out frequently, and thus results in a high beam training overhead. Therefore, to reduce 

the beam training overhead for mobile users, an efficient beam tracking scheme is required for practical THz 

massive MIMO systems [25]. THz communications are currently limited to small-scale applications due to the 

significant path loss bottleneck. The THz band is utilized in various cutting-edge applications[26]. nevertheless, 

path loss often poses challenges for THz signals. For example, at 0. THz, a path loss of 110 dB/100 m can occur, 

making it difficult to achieve desired coverage. Fortunately, the use of a precoding strategy can address the path 

loss issue without the need to increase transmitter power. This technique allows for the generation of narrow 

beams with high antenna array gain, effectively mitigating the impact of severe path loss[27]. 

2.EXISTING SYSTEM 

The existing beam tracking schemes can be generally divided into two categories. The first category mainly relies 

on the user mobility model [25]–[27]. The second category is codebook-based beam tracking, where a training 

procedure between the BS and the user is carried out to find out the optimal beam from a predefined beam 

codebook [28]–[30]. For the first category of beam tracking schemes, the key problem is how to model the user 

mobility. Specifically, [25] assumed that the user mobility satisfies the first-order Gauss- Markov model, and an 

extended Kalman filter method was proposed to track the optimal beam. To improve the beam tracking accuracy, 

the user mobility was further formulated as a kinematic model, and a modified unscented Kalman filter was 

exploited to track the channel angles more accurately [26]. In addition, based on the linear motion model defined 

by user physical direction and user velocity, a priori-aided beam tracking scheme was proposed in [27]. 

Nevertheless, this category of beam tracking schemes highly relies on the user mobility model as a priori, which 

may be inaccurate and cannot be easily obtained, especially in THz massive MIMO systems. The second category 
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of beam tracking schemes depends on the design of codebook-based beam training algorithms, where each 

codeword in the codebook determines a directional beam. For instance, [28] searched the optimal beam among a 

beam codebook containing potential beams through a single-sided exhausted training procedure. To reduce the 

unacceptable beam training overhead caused by the large codebook size in [27], an adaptive search scheme was 

proposed by using the hierarchical codebook, which consists of different beam code words with different angular 

coverage. To further accelerate the beam tracking procedure, an auxiliary beam pair based beam tracking scheme 

was proposed in [30], where the optimal beam was obtained based on the user received signals of two auxiliary 

beams generated by two extra RF chains. Note that codebook-based beam tracking schemes have been widely 

considered in millimeter-wave massive MIMO systems. Although the existing beam tracking schemes above 

[25]–[27] can achieve the acceptable performance, they are only suitable for narrowband systems with the 

traditional hybrid precoding structure. In wideband THz massive MIMO systems, since the hybrid precoding 

structure cannot mitigate the serious beam split effect, these schemes will suffer from a severe performance 

degradation. Consequently, an efficient wideband beam tracking scheme is essential for wideband THz massive 

MIMO systems. Recently, several wideband beam tracking or training scheme have been proposed. Specifically, 

a fast tracking scheme based on frequency-dependent beams generated by true-time-delay array was proposed in 

[16]. While, due to the large number of antennas, utilizing true-time delay array will introduce unacceptable 

energy consumption in THz massive MIMO. 

3.PROPOSED SYSTEM 

we propose a beam zooming based beam tracking scheme to solve the wideband beam tracking problem in THz 

massive MIMO systems. For the wideband systems, the severe performance loss caused by the beam split effect 

must be eliminated. Thus, in this paper we consider the delay-phase precoding structure [18], which has been 

proved to be able to achieve the near-optimal achievable sum-rate performance with acceptable energy 

consumption in wideband THz massive MIMO systems. The contributions of this paper can be summarized as 

follows.  We reveal the beam zooming mechanism by analyzing the angular coverage of frequency-dependent 

beams generated by the delay-phase precoding structure. We show that by the elaborate design of time delays, 

i.e., the frequency-dependent phase shifts, the angular coverage of these beams can be flexibly zoomed to achieve 

a required angular range. This mechanism to flexibly control the angular coverage, i.e., the degree of beam split 

effect, enables us to generate multiple beams simultaneously by using only one RF chain, which is impossible for 

existing schemes. 

Based on the beam zooming mechanism, we propose a beam zooming based beam tracking scheme to solve the 

wideband beam tracking problem. In the proposed scheme, multiple user physical directions are tracked by 

multiple frequency-dependent beams in each time slot. By leveraging the beam zooming mechanism, the angular 

coverage of these beams can be flexibly controlled to cover a fraction of the potential variation range of the user 

physical direction. After the whole variation range of the user physical direction has been tracked, the BS can 

obtain the optimal beam based on the user received signal power. Unlike traditional beam tracking schemes which 

usually track only one user physical direction in each time slot, the proposed scheme is able to track multiple user 

physical directions in each time slot by actively controlling the angular coverage of frequency-dependent beams, 

i.e, the degree of beam split effect. Thus, the beam training overhead can be significantly reduced. 

SYSTEM MODEL: 

The wideband THz multi-user mMIMO system is considered. The Base Station use N-antennas to serve K 

single-antenna users over a band width B,and OFDM with M subcarriers is employed.  

A terahertz massive MIMO system is a conventional ihybrid precoding.Owing to the drawbacks of the Analog 

Beamforming and Spatially sparse precoding method, propose a new technique called a DPP. In DPP, we study a 

THz mMIMO system with conventional hybrid precoding. The BS services an Nt-antenna identical array and NRF 

is the RF chain. A user with Nr-antenna is provided, as well as NS data streams were transmitted at the same time 

(Nt ≫ NRF ≥ Ns = Nr). To appreciate consistent wideband transmission, we accept OFDM with M subcarriers. We 

familiarize a time-delay (TD) among the traditional analog beamformer as well as the digital precoder [12]-[13 ]-

[14]. Every RF chain being sub-connected to K TD components, which are in turn sub-connections to P = Nt/K 

conventional frequency independent PS. As a result, the mth subcarrier of signal received may be written as 
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Fig i2: i(a) iHybrid precoding structure; i(b) Delay phase precoding structure[16]. 

             Ym =√ρHH
m ADm Sm + nm                                                1 

Where Hm ∈ CN
r×N

t   denotes the channel at the mth sub-carrier.A ∈ CN
t×N

RF   is the analog beamforming provided 

by the frequency based PSs, Dm is the is the digital precoder at the mth sub-carrier.We examine the wide band 

beam based channel model[20] for THz communication.Then, the time-domain channel hnt,nr can be represented 

as  

ℎ
𝑛𝑡,𝑛𝑟=∑ 𝑔𝑙(𝑡−𝑇𝑙−(𝑛𝑟−1)

𝑑

𝑐
𝑠𝑖𝑛Ø−(𝑛𝑟−1)

𝑑

𝑐
𝑠𝑖𝑛𝜃𝑙

𝐿
𝑙=1

                                              2 

where L is the paths gl and Tl, denotes the path gain and path delay of the lth path ϕl. 

A. Beam split Effect 

As illustrated in Figure.2, the effect of beam split occurs when the array gain is severely degraded[20 ]. We start 

with lth path component, which has a spatial direction θl,m in THz mMIMO channel without loss of generalization. 

Typically, al = A[:,l] the beam of the analog beamformer is used on the lth path spatial direction at fc and al = 

ft(θl,c) 

|ft(θl,c)Hal| = |η(al, θl,c)| = |ft(θl,c)ft(θl,c)H| = 1                                3 

As a result of, narrowband systems may have the maximum array gain throughout that bandwidth isfm ≈ fc . As 

a result, at various subcarriers, the path components have varied spatial direction. 

θl,m = fm/fc θ l,m = ξm θ l,m                                                                                                       4 

Where ξm = fm/fc is the comparative frequency, In THz communications, Based on the problem given above, we 

suggest a new precoding method for the DPP. 

 

 

 

 

 

 

 

Fig i3. (a)iBeam Spilt effect; (b)Beams generated by the DPP. 

A.True time delay based DPP 

The frequency-independent beam shape produced by the PSs in the traditional hybrid precoding design would 

suffer substantial array gain loss as a result of the beam split effect.We’ll suggest a precoding architecture called 
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DPP in this subsection to address this issue  Fig. 3 illustrates the comparison with the hybrid precoding 

architecture.  

We investigate the l-th channel route component without losing generality. We now use the frequency based 

al,min lieu of the frequency based al to indicate the analog beamform vector created through the Delay Phase 

Precoding because the TD network can give frequency based phase shifts. The frequency based analog beamform 

vector al,m, for example, may be written as 

           al,m = diag([a l.,1, a l.,2, a l.,3, . . . a l.,K])P m,l                           5 

where al,k ∈ C1×P , k=0,1,2,3,....,K represents the analog beamform vector concluded through PSs connected to 

the kth Time Delay elements. 

The user may then be covered by the beams across the whole bandwidth, resulting in a gain for the array that is 

close to ideal. First, we will employ frequency based PS to build a beam pointed in the desired physical direction 

to fulfil this design objective. that al, such as 

                ft(θl) = [aT
l,1, aT

l,2, ...., aT
l,K]                                                 6 

Then,we use frequency dependence for the direction which the beams [aT
l,1, aT

l,2, ...., aT
l,K]                                                 = 

ft(θl) is arranged from θl,m to θl . In particular,due to the frequency based phase shifts 2fmtl,k = βl,m (K+1) with k 

= 1, 2, 3, .....K, Pl,m satisfies 

P l,m [k] = [1, e−jπβl,m , e−j2πβl,m , e−j2πβl,m , ....., e−jπ(K+1)β l,m]T               7 

To obtain the almost ideal array gain across the full bandwidth, we developed a DPP design, and a new Time 

Delay network is interposed among the PS network and the RF chains as. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4:The iproposed iTTD-DPP istructure. 

                                     Ym=√𝜌𝐻𝑚
𝐻𝐴𝑚𝐷𝑚𝑆𝑚 + 𝑛𝑚                                                  8 

where Au ∈ CNRF×Nt is the analog beamformer with the formation as  

                      Am = [Am,1,Am,2 ....,Am,n]                                               9 

Here  diag([al,1, al,2,  . . . al,K]) indicates the analog beamform and ATTD
m ∈CKN

RF×Nt 
RF is the frequency based 

phase shift fulfilled by the TTD network, 

B.BEAM ZOOMING BASED BEAM TRACKING METHOD 

  The beam codebook generates the prospective beam matched with a certain directions for each codeword. For 

beam tracking, BS delivers training pilot sequences to every user at various times using distinct code words from 

the codebook[19].The beamforming vector for the following frame is then chosen from the codeword with the 

highest received power. 

The frame of the kth user is to physical direction is indicated by θ(0)
k,i.In general, the angle tracking range may be 

reduced using information about the user’s movement. The method of the standard beam tracking method in[19] 

utilising the Delay Phase Precoding may be expressed as 

θ-(t)
k,i = θ(0)

k,i − α + (2t − 1)α/T      10 
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 iFig.4.The  typical  beam  tracking  scheme i[19]  adapted ito ithe  DPP  structure: i(a) ithe ibeams  generated  by 

ithe iDPP  structure iat ithe it-th itime islot; i(b) ithe ibeams igenerated iby ithe iDPP istructure iat ithe i(t i+ i1)th 

itime islot 

  

In physical directions of the θ-(t)
k,i, t = 1, 2, 3, ...., T can covering the tracking ranges of [θ(0)

k,i − αθ(0)
k,i + α].Then,the 

BS sends pilot sequence with the beam aligned to the physical direction θ-(t)
k,i to the kth user in the tth time slot 

The Algorithm 2 is Beam’s tracking method to find the physical directions of users θ(0)
k,i for all K users.At 1st the 

user that will be tracking in the tth time slots are computed in step 1 and step2,are θ-(t)
k,i,cen indicates the central 

direction that will be tracking at the mth sub carrier in the tth time slot as  

θ-(t)
k,i  = θ-(t)

k,i,cen+ (1 – ζ1)α/T+2ζmζ1(ζm − 1)/ ζm (ζm – ζ1)α/T          11 

 

In step 3, a target direction set ψi+1 k is created by combining all probable users directions that will be monitored 

throughout T time intervals.To ensure that the whole angle tracking range will be explored, the target direction 

set is tracked in T time slots once it has been constructed. In the tth time slots, beams that covers the tth fraction 

of tracking ranges is [θ(0)
k,i+1 − α + (2t−2)α/T , θ(0)

k,i+1 − α + 2tα/T ] are caused by the DPP structure in steps 5-9. 

Øt
k = θ-(t)

k,i,cen+(1 – ζ1)α/T                                            12 

St
k=P/2(Øt

k +2ζmζ1 α/(ζm – ζ1)T                                   13 

Then,in step7 and 8,when Øt
k and St

k satisfy (15) and (16).The beams generated by ft
k,m = As,t

k e−j2πfmtt
k 

,m=,2,....,M,which is corresponding to the target users directions in ψi+1
k .Based on tt

k and As,t
k ,the tth time slot  

At
m of the analog beamformer is calculated in steps 8 and 9. 

In step 10, At
m is the analog beamformer as calculated, the Base Station transmits training pilot sequence qt

k,m ∈ 

CQ×1. The pilot sequences of the received signal for K users Ym,t ∈ CQ×K  at sub-carrier m can be indicated as 

Ym,t =kmHmAt
mQt

m+Nt                                                    14 

Where Qt
m=[Qt

1,m, Qt
2,m,..... Qt

k,m] 
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 Simulation i& Results: 

The performance of different precoding approaches is demonstrated in this section using numerical 

simulations. The system parameters are shown in Table 1. We analyze the rate performance of DPP, Hybrid 

Precoding, and Analog Beamforming for L=4 and L=16 in Figures 5 and 6. The proposed DPP outperforms the 

other approaches, achieving over 96% performance compared to the benchmark, as depicted in the graph. 

 
Figi5: i SE versus SNR for  different PNRs i(L=4) 

 

 When Ns=4, Fig. 5 and 6 compare the performance of the suggested TTD-DPP and various hybrid 

precoding methods in terms of the average attainable rate. The spatially sparse precoding in [8], the attainable rate 

optimisation [9], and the analogue beamforming [12] are examples of existing solutions.We can clearly observe 

in Figs. 5 and 6 that the beam split effect causes a rate loss of about 50% for the spatially sparse precoding 

[8].While the attainable rate loss generated by the beam split effect can be substantially alleviated by the analogue 

beamforming[12] and achievable rate optimization[9] developed for mm-wave mMIMO systems. 
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Figure i6: iSE versus SNR for  different PNRsi(L=16) 

Fig.7 gives where Ns=4, the performance of the average achievable rate K, SNR=10dB, to illustrate the 

outcome of the no.of TTDs K on the proposed TTD-DPP are considered. That the recompense for array gain 

losses effected within the beam split examine the whole total bandwidth. Observe from Fig. 7 that the performance 

of the achievable rate for the suggested TTD-DPP improves as K rises and reaches the almost ideal possible rate 

at K=16. 

 
Fig 7: Achievable irate iperformance iversus the No.of TTd’s K  

Table iI: Simulation Parameters for Precoding Techniques 

 

The no. of the BS’s iantennas(Nt) i( 256 

The no. ofithe user iantennas(Nr) i 1,2,4 

The no. of channel ipaths(L) i 4,16 

The central frequency(fc) i 0.1THz 

Bandwidth(B) i 30GHz 

No.iof the subcarriers(M) i 128 

No.of RFchains(NRF) i 4 

No.iof TDielements(iK)  16 

Transmission iSNR(iρ/σ2)  -20-15dB 

 

In Figure 8, we show the sum-rate performance versus the no.of beam tracked time slot T with k user, 

the best fully digital Zero Forcing precoding [14], beam selection with suitable physical directions [17] and 

selection of the beam to the situated on the physical direction tracked by the traditional beam schemes [19] that 

uses a DPP structure. Physical directions are chosen for the beam using a hybrid precoding structure[8]. We can 

see from Fig. 8 that the suggested beam tracking system may be used to take advantage of the beam choice to 

attain near-optimal possible sum-rate with minimal training overhead. 
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Fig 8: Achievable sum-rate vs beam training over head 

Conclusion: 

I In this research, we have addressed the problem of wideband beam tracing in THz-mMIMO systems and 

first demonstrated that the beam tracking mechanism can dynamically regulate the angular coverage of the rays 

caused by the Dealy Phase Precoding, i.e, unlike conventional methods the frequency dependent beams can 

usually be caused by the RF chain, the suggested approach uses several frequency based beams caused by a single 

RF chains to track various directions of the user simultaneously, which is achieved by dynamically changing the 

beam-splitting effect. Compared with the various beam-tracked methods, the suggested method can perfectly 

tracking the user's mobility with a decreased beams-training overhead of about 95\%, as shown by theoretical 

values and simulation results. Moreover, in the physical directions covered by the proposed approach, the 

recommended ray tracing method can achieve about 99\% of the achievable sum rate, which makes the desirable 

for massive THz MIMO systems. 
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