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ABSTRACT 

DHEV (Detecting Harmful Exhaled Vapors) is a novel, portable, non-invasive system designed for diabetes and 

gastrointestinal disease detection using breath samples. It employs metal-oxide-semiconductor (MOS)-type 

electrochemical sensors to analyze volatile organic compounds (VOC’S) in breath, differentiating between 

diseased individuals and non-diseased individuals. The system integrates with sensor data, achieving a test and 

train accuracy of 98.00% and 98.50% through an MLP model. This affordable digital health device aims to 

enhance patient adherence to regular monitoring and facilitate early intervention for diabetes [1]. 
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1. INTRODUCTION 

The World Health Organization’s most recent statistics indicate that there are more than 500 million diabetic 

patients worldwide, and around 1.6 million people die each year due to diabetes and related disorders and the 

number of people living with diabetes may reach 780 million by 2045, according to reports from the International 

Diabetes Federation (IDF) [2].Breath analysis for disease detection involves measuring volatile organic 

compounds (VOCs) in breath using sensitive analytical techniques. Disease diagnosis is conventionally conducted 

using expensive, time-consuming, invasive techniques, applied by appropriately trained health care professionals. 

For instance, gastroscopy, laryngoscopy, and coronary angiography are used for gastric cancer (GCa), lung cancer 

(LC), and myocardial infraction diagnosis, respectively [3]. Other commonly used methods, such as computed 

tomography [4] or mammography, used for breast cancer (BC) [5], may also be harmful due to radiation exposure. 

As a result, patient compliance and utilization of such diagnostic methods are remarkably reduced for a significant 

part of the population. In this project we use non-invasive method for disease detection by using various sensors 

such as MQ-3 for diabetic detection using acetone as VOC, MQ-135 for gastro intestinal disorders using ammonia 

as VOC. Since the gas sensors are sensitive to temperature and humidity, we use DHT22 in order to generalise 

the reading by setting a threshold level.  

1.1 Breath analysis for Diabetes 

Acetone is not only an effective biomarker of Diabetes Mellitus but also proved to be a rapid, patient compliant 

viable alternative to the conventional methods of blood glucose determination [6]. The correlation between 

specific VOCs in human breath and blood glucose levels (BGLs) has been established. For instance, breath 

acetone has been identified as a crucial biomarker for type 2 diabetes, directly linked to blood glucose 

concentrations [7,8]. Previous studies have shown that the acetone concentration in breath correlates with BGLs 

[8]. Similarly, a recent study [9] investigated the potential of salivary amylase as a biomarker for diabetes. Salivary 

amylase studies have shown that the acetone concentration in breath correlates with BGL. 
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1.2 Breath analysis for gastrointestinal diseases 

Ammonia in breath serves as a biomarker for conditions such as chronic kidney disease (CKD), liver dysfunction, 

and gastrointestinal disorders like Helicobacter pylori infection [10]. Elevated breath ammonia levels correlate 

strongly with blood urea nitrogen (BUN) levels, making it useful for assessing kidney function in CKD patients. 

Among the many markers, ammonia is often used as a biomarker for the monitoring of liver and kidney functions 

[11]. 

2. LITERATURE REVIEWS 

Kapur et al. (2023) developed DiabeticSense, a portable IoT-based system for non-invasive diabetes detection 

through breath analysis, aiming to replace conventional finger-prick tests. The system addresses infrequent 

glucose monitoring by providing a painless alternative, particularly beneficial for early-stage detection and 

resource-constrained environments, they have taken clinical samples from 100 patients at a nationally recognized 

hospital, they have used multi-sensor architecture with cloud connectivity for data processing, the obtained data 

was classified and modeled using Gradient Boosting Classifier with cross-validation they have obtained an 

accuracy of 86.6% [1]. 

The study by Paleczek, Grochala, and Rydosz (2021) Developed a non-invasive breath analysis system using 

acetone as a biomarker for diabetes detection through machine learning. They have acetone as the VOC of diabetic 

detection using a multi-sensor array where the controlled experiment has acetone concentration (0.9-5.4) and 

classification is done by XGBoost algorithm with 92% accuracy and Deep learning model with 96% accuracy. 

They created synthetic data using CTGAN and with that data they have trained and improved the model [17]. 

In this paper the model is trained for detecting type 2 diabetics by measuring the acetone levels. They made a 

hybrid approach and named it as CORNN which is the combination of SVM and MLP with different kernels to 

improve the model performance. The dataset comprised of 152 breath samples with 68 diabetic and 84 healthy 

individuals with this hybrid model. They obtained an accuracy of 98.02% with low error rate of 0.02 [2]. 

The article analyzes existing studies using VOCs in breath for lung cancer detection. It reviews datasets from 

multiple studies, including various sample sizes and gas chromatography-mass spectrometry (GC-MS) and 

electronic nose (e-nose) methods. Reported model accuracy varies from 71% to over 90%, depending on sensor 

type and VOC detection approach. However, no single unified dataset or model is established due to variability 

across studies [16]. 

This paper aims to develop a non-invasive glucose monitoring system that utilizes exhaled breath analysis, 

integrating IoT devices with machine learning algorithms for real-time glucose level estimation. They have 

collected 462 samples from individuals, they reviewed and used 13 machine learning algorithms such as random 

forest, SVM, XGBoost and Gradient boosting and achieved an accuracy of 96.9%, the model is trained for testing 

the blood sugar level. These results indicate a significant improvement over previous methods, with the BGL 

(Blood Glucose Level) assessment model achieving a 43.3% higher accuracy compared to earlier approaches [18]. 

This review paper delves into advancements within electronic nose (e-nose) technology for exhaled breath 

analysis. It's particularly focused on highlighting the various sensors used, with specific attention to the MQ series, 

in detecting VOCs relevant to different diseases. The paper likely discusses the specific design considerations and 

performance metrics of these sensors, offering insights into the current capabilities and limitations of e-noses in 

clinical applications [19]. 

This survey offers a broad overview of non-invasive breath analysis techniques aimed at biomarker detection for 

clinical diagnosis. It likely explores a range of algorithms used in the analysis process. A key aspect is the 

discussion of the advantages and limitations, as well as overarching challenges, in using breath analysis for early 

disease detection and prognosis [20]. 

This paper focuses specifically on the use of exhaled breath VOC biomarkers for screening liver diseases and 

head and neck cancers, covering both metabolic and non-metabolic disorders. It examines the application of single 

sensors and e-nose (sensor array) approaches, combined with machine learning techniques for pattern recognition. 

This research demonstrates the increasing use of data-driven methods to enhance the accuracy of breath-based 

diagnostics [21]. 
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This study assesses the feasibility of using a low-cost, sensor-based system for monitoring methane levels. The 

key finding is that combining TGS2611 and MQ-4 sensors improves methane detection accuracy and range. 

This enhancement is particularly relevant for monitoring gastrointestinal disorders where methane serves as a 

key biomarker, showcasing the potential for affordable, non-invasive diagnostics [22]. 

3. MATERIALS AND METHODS 
3.1 Objective 

To develop and evaluate a low-cost portable, non-invasive device named DHEV that uses breath samples as input 

and generates diabetes and gastrointestinal disease predictions based on Deep Learning model. 

3.2 Design 

The breath analysis enclosure is meticulously designed to ensure accurate sensor exposure and reliable data 

acquisition. An inclined thermocol platform is diagonally positioned within the enclosure to support the sensors, 

providing both elevation and stability. This orientation ensures direct exposure of the sensors to the incoming 

breath sample. At the front panel, two pink straws serve as dedicated breath inlet tubes, aligned precisely with the 

sensor array to enable efficient capture of volatile organic compounds (VOCs). The sensor assembly consists of 

MQ-3, MQ-135, and DHT22 sensors, strategically spaced on the platform to prevent thermal and signal 

interference, thereby enhancing the accuracy of measurements. The ESP32 development board is securely 

mounted at the base of the enclosure, with neatly organized jumper wires establishing connections to all sensors 

and the integrated OLED display. The compact OLED screen is used to present real-time readings of temperature, 

humidity, and gas concentration values, enabling immediate monitoring and validation of sensor data. 

 

 

 

 

 

 

 

 

 

3.3 Overview of the sensors 

• DHT 22 

DHT22 is a commonly used temperature and humidity sensor. The sensor has a dedicated NTC thermistor to 

measure temperature and a 12-bit microcontroller to output temperature and humidity values as serial data. 

The sensor can measure temperature from -40 °C to 80 °C and humidity from 0% to 100% with an accuracy 

of ±1°C and ±1% [12]. 

• MQ-3 (Acetone Sensor)   

The MQ-3 is a widely used analog gas sensor designed to detect alcohol and ketones, particularly acetone, 

which is a key biomarker in diabetes-related breath analysis. It uses a tin dioxide (SnO₂) semiconductor layer 

whose resistance decreases in the presence of acetone vapors. The sensor provides an analog voltage output 

that varies with gas concentration. It operates effectively in the range of 0.1 to 10 ppm acetone and has high 

sensitivity with good stability. 

 

• MQ-135 (Ammonia Sensor): 

Fig -1: DHEV Device 
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The MQ-135 is an air quality sensor capable of detecting gases such as ammonia, sulfur dioxide, carbon 

monoxide, and benzene. Like other MQ sensors, it relies on a tin dioxide-based sensing layer that changes 

resistance in response to gas concentration. It has a detection range of 10 to 1000 ppm for ammonia and 

provides analog voltage output proportional to concentration. 

Table -1: Threshold range for disease detection 

DISEASE NORMAL 

LEVEL 

DISEASE LEVEL 

Diabetes (Acetone) <1.8ppm >1.8ppm 

Gastro Intestinal 

(Ammonia) 

<1.5ppm >1.5ppm 

 

Table -2: Real-time effect of fasting in biomarker 

TIME Tested Value 

mg/dL 

Value of MQ3 

sensor (ppm) 

Before fasting 180 1.90 

1
2⁄  hour after fasting 226 2.10 

1  hour after fasting 220 2.10 

1 1
2⁄  hour after fasting 205 2.00 

2 hour after fasting 184 1.90 

The patient who was tested for this study has type 2 diabetic with a usual range of 180-230 mg/dL. The tested 

value is measured using One Touch glucose level testing machine. 

 

 

 

 

4. MODEL DEVELOPMENT 

4.1 Architecture  

A Multi-Layer Perceptron (MLP) classifier was used for disease prediction. The model architecture and 

training parameters were: 

• Model: MLP 

• Hidden Layers: Two hidden layers with 32 neurons each 

• Activation Function: ReLU  

• Learning Rate: Initial learning rate of 0.1 

• Regularization: L2 regularization with alpha = 0.1 

• Early Stopping: Enabled with validation fraction of 0.1 and patience parameter of 20 epochs 

• Random State: 42 for reproducibility 

• Maximum Iterations:1500 

Fig -2: MQ3 [3] Fig -3: DHT22 [15] Fig -4: MQ135 [14] 
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Table -3: Comparision between Logistic Regression and MLP model 

LOGISTIC 

REGRESSION 

MLP MODEL 

Uses linear 

relationship 

Uses non-linear 

relationship 

Accuracy: 20-50% Accuracy 90-98% 

Not suitable for 

serial values 

Best suitable for serial 

values 

Suitable for only 

classes with linear 

boundaries 

MLP can learn complex, 

curved boundaries.. 

Sensitive to noise  More robust to sensor 

noise 

 

4.2 Model Training 

The dataset was split into training and testing sets with an   80/20 ratio. The model was trained on the training set, 

and its performance was evaluated on the test set. The evaluation metrics used were: 

1. Accuracy 

2. F1 Score  

3. Precision 

4. Recall 

5. Confusion Matrix 

6. Cross-Validation Score (5-fold stratified cross-validation) 

4.3 Assessment of the evaluation metrics 

1) Accuracy: It represents the ratio of correctly classified samples to the total number of samples.  

Accuracy =
TP + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

2) F1 Score: It is the harmonic mean of precision and recall 

F1 = 2 ∗
(Precision ∗ Recall)

Precision + Recall
 

3) Precision: Proportion of correctly predicted positive observations to the total predicted positive observations. 

Precision =
TP

𝑇𝑃 + 𝐹𝑃
 

 4) Recall: Proportion of correctly predicted      positive observations to all actual positives. 

Recall =
TP

𝑇𝑃 + 𝐹𝑁
  

Where: 

• TP = True Positives 
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• TN = True Negatives 

• FP = False Positives 

• FN = False Negatives 

5) Confusion matrix: It is a tabular representation of actual versus predicted classifications. It illustrates the 

number of correct and incorrect predictions made by the model, categorized by class. 

6) Cross-Validation (CV) Score (5-fold stratified cross-validation): Stratified k-fold cross-validation partitions the 

dataset into k equally sized folds, preserving the class distribution in each fold. Each fold is used once as a 

validation set while the remaining k-1 folds are used for training. 

CV Score =
1

𝑘
∑ 𝑆𝑐𝑜𝑟𝑒

k

i=1

 

 

Table -4: Hyper parameter tuning table 

 

 

 

 

4.4 Dataset collection 

We generated a synthetic dataset 

based on the threshold values 

from the research papers 

and combined it with the real 

time data collected from 

the breath samples from 8 

diabetic patients. 

5. RESULT  

The developed Multi-Layer Perceptron (MLP) model exhibited outstanding performance in classifying diabetes 

and gastrointestinal diseases based on breath biomarkers. The model achieved a training accuracy of 98.50% and 

a testing accuracy of 98.00%. The weighted F1 scores 0.9850 for training and 0.9799 for testing further confirmed 

that the model maintained a strong balance between precision and recall across all disease categories. Cross-

validation using a stratified 5-fold approach yielded a mean F1 score of 0.9312 ± 0.0370, indicating consistent 

performance across different data subsets. 

6. CONCLUSION AND FUTURE SCOPE 

The DHEV system successfully bridges the gap between traditional invasive diagnostics and modern breath-

based disease detection. By integrating ESP-32 with MQ-3 (acetone) and MQ-135 (ammonia) sensors 

developed with an optimized MLP model, the system provides a portable, non-invasive, and cost-effective 

solution for early disease screening. The high accuracy (98%) and strong F1 scores validate its clinical potential, 

particularly for diabetes and gastrointestinal disorders, where breath biomarkers like acetone and ammonia have 

established diagnostic relevance. The current breath-based disease detection system demonstrates promising 

results for early screening of diabetes and gastrointestinal disorders. However, it can be improved by using more 

specific gas sensors to detect a wider range of diseases more accurately. Collecting additional real-time data 

S.No 
Hyperparameter Tuning 

Hidden layers 
Alpha Learning rate F1 score-

Training 

F1 score- 

Testing 

1 (32) 
0.0001 0.001 78.4% 76.0% 

2 (64) 
0.001 0.001 82.1% 85.1% 

3 (64, 32) 
0.01 0.01 88.6% 94.7% 

4 (64, 32, 16 
0.05 0.01 91.3% 94.1% 

5 (128, 64, 32) 
0.05 0.005 90.7% 93.8% 

6 (64, 64) 
0.01 0.01 89.5% 92.5% 

7 (32, 32, 32) 
0.01 0.001 87.9% 83.0% 

8 (128) 
0.001 0.01 83.2% 81.2% 

9 (128, 64) 
0.001 0.005 88.0% 89.5% 

10 (64, 32, 16) 
0.001 0.005 87.3% 90.7% 

11 (32, 32) 
0.1 0.1 98.5% 97.9% 
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from different people and settings will help make the model more reliable. An interface can be developed to 

show live breath readings, disease predictions, and past trends. Also, adding wireless features like Bluetooth or 

Wi-Fi will allow the system to send data to a mobile phone or computer, making it easier to use for regular 

health checks, even in remote areas. 
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