
Vol-8 Issue-1 2022               IJARIIE-ISSN(O)-2395-4396 

   

16008 www.ijariie.com 1215 

 

COLOCATED MIMO RADAR: BEAMFORMING 

TRANSMISSION, WAVEFORM MODELING,  

TARGET PARAMETER ESTIMATION 
 

RANDRIANANDRASANA Marie Emile 1, RANDRIAMITANTSOA Paul Auguste2, 

RANDRIAMITANTSOA Andry Auguste3 
 

1
Dept. of Telecommunication, Antsirabe Vankinankaratra High Education Institute, 

University of Antananarivo, Madagascar, 

 

²Dept. of Telecommunication, High School Polytechnic of Antananarivo, 

University of Antananarivo, Madagascar, 

3
Dept. of Telecommunication, High School Polytechnic of Antananarivo, 

University of Antananarivo, Madagascar, 

ABSTRACT 

 

This work focused on the topic related to emerging MIMO radar technology. A new method to jointly solve the 

problem of designing the beam pattern as well as the waveform is detailed. Uses of different mapping functions, 

Gaussian and random variables are mapped onto waveforms with different modulation schemes and the relationships 

between the cross-correlation of Gaussian VR and these waveforms are derived. We have introduced the estimation of 

the reflection coefficient, the Doppler shift and the localization of a moving target in the presence of interferers. By 

exploiting a 2D-FFT transformation, we avoided a complex two-dimensional resolution finding process. 
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1. INTRODUCTION 

Radar, an acronym for Radio Detection and Ranging, detects and locates targets in a limited volume in space by 

transmitting electromagnetic energy and processing reflected echoes [1]. Other target characteristics such as speed, 

shape and composition can also be extracted. Introduced towards the end of the 19th century, the concept of detecting 

the presence of metallic objects at a distance by means of radio waves aroused much interest, mainly in the military 

field, and was considerably improved during the two world wars. [2]. Nowadays, radars are used more and more in 

many fields such as speed-gun, short-term weather forecasts as well as geological observations [3]. 

2. MIMO RADAR 

MIMO radar can transmit independent or partially correlated waveforms [4]. As in communications, MIMO 

technology has greatly improved the performance of the radar system. For example, the MIMO radar can identify 

multiple targets 𝑛𝑇 times [5]. In addition, MIMO radars benefit from virtual arrays [6] and offer additional degrees of 

freedom [7], which can be exploited for more, better parametric identifiable, higher spatial resolution and beam 

pattern design more complex transmissions.  

Consider a collocated MIMO radar of 𝑛𝑇 transmit and receive antennas. If 𝑥𝑚(𝑛) is the baseband signal emitted by 

antenna 𝑚 at a frequency 𝑓𝑐 =
𝑐

𝜆𝑐
  , the signal received by a target located at an angle 𝜃𝑡 in a far field is: 

𝑟(𝑛, 𝜃𝑡) = 𝑎𝑇
𝑇(𝜃𝑡)𝑥(𝑛),   𝑛 = 1,2, …… ,𝑁,    (1) 

where 𝑁 denotes the total number of symbols transmitted from each antenna, 𝑥(𝑛) is the vector of symbols 

transmitted at time index 𝑛: 

𝑥(𝑛) = [𝑥1(𝑛) 𝑥2(𝑛) … 𝑥𝑛𝑇(𝑛)]
𝑇 ,    (2)  

and 𝑎𝑇(𝜃) is the transmission direction vector which takes into account the delay relative to each antenna and is 

expressed as follows: 

𝑎𝑇(𝜃) = [𝑒
𝑗
2 𝜋

𝜆𝑐
𝑇1(𝜃) 𝑒

𝑗
2 𝜋

𝜆𝑐
𝑇2(𝜃)

… 𝑒
𝑗
2 𝜋

𝜆𝑐
𝑇𝑛𝑇(𝜃)]

𝑇

.    (3) 
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Using equation (1), the power transmitted in a specific direction 𝜃 is defined as 

𝑃(𝜃) = 𝐸{𝑎𝑇
𝑇(𝜃)𝑥(𝑛)𝑥𝐻(𝑛)𝑎𝑇

∗ (𝜃)} = 𝑎𝑇
𝑇(𝜃)𝑅𝑎𝑇

∗ (𝜃),    (4) 

where 𝑅 is the covariance matrix of the transmitted waveforms. If the waveforms are orthogonal, i.e. 𝑅 = ln(𝑇), 
power is equally transmitted in all directions and adaptive techniques can be applied without the need for counting . 

 
Fig 1. : Diagram of a uniform linear radar 

If we consider a ULA (Uniform Linear Array) radar with a half-wavelength spacing between each element (see Figure 

1), the expression for the excess distance 𝜏𝑖(𝜃) traveled by the signal emitted by the antenna 𝑖 becomes: 

𝜏𝑖(𝜃) = (𝑖 − 1)
𝜆𝑐

2
sin(𝜃),     (5) 

and the expression of the direction vector 𝑎𝑇 becomes: 

𝑎𝑇(𝜃) = [1 𝑒𝑗𝜋𝑠𝑖𝑛(𝜃) … 𝑒𝑗(𝑛𝑇−1)𝜋𝑠𝑖𝑛(𝜃)]   (6) 

Assuming that the target has a reflection coefficient 𝛽𝑡 and moves with a radial velocity  𝑣𝑟 , it produces a normalized 

Doppler shift 𝑓𝑑𝑡 such that: 

𝑓𝑑𝑡 =
𝑣𝑟

𝑐
𝑓𝑐.       (7) 

By defining the direction receiving vector 𝑎𝑅 as: 

𝑎𝑅(𝜃) = [1 𝑒𝑖𝜋𝑠𝑖𝑛(𝜃) … 𝑒𝑖(𝑛𝑅−1)𝜋𝑠𝑖𝑛(𝜃)],   (8) 

Echoes reflected from the target are designated by: 

𝑦𝑡(𝑛) = 𝛽𝑡𝑒
𝑗2𝜋𝑓𝑑𝑡𝑛𝑎𝑅(𝜃𝑡)𝑎𝑇

𝑇(𝜃𝑡)𝑥(𝑛).    (9) 

Moreover, let 𝐿 be the number of static interferers located at angles 𝜃1 to 𝜃𝐿 and with a reflection coefficient  𝛽1 to 𝛽𝐿. 

In the presence of a white Gaussian noise centered 𝑣, the received signals can be expressed in vector form: 

𝑦(𝑛) = 𝛽𝑡𝑒
𝑗2𝜋𝑓𝑑𝑡𝑛𝑎𝑅(𝜃𝑡)𝑎𝑇

𝑇(𝜃𝑡)𝑥(𝑛) + ∑ 𝛽𝑖𝑎𝑅(𝜃𝑖)𝑎𝑇
𝑇(𝜃𝑖)𝑥(𝑛) + 𝑣(𝑛), 𝑛 = 1,2, … , 𝑁

𝐿
𝑖=1     (10) 

3. BEAMFORMING TRANSMISSION AND WAVEFORM DESIGN 

Beampattern matching involves designing waveforms with the specific properties of cross-correlation to approximate 

a desired beam. Usually the desired beam is used to maximize the transmitted power in the region of interest and 

minimize it in all other directions. As shown in equation (1), the baseband signal received at a location 𝜃𝑘 is defined 

as: 

r(n, θk) = aT
T(θk)x(n); n = 1,2, …………N    (11) 

Thus, the received power at location 𝜃𝑘 is expressed as: 

𝑃(𝜃𝑘) = E{aT
T(θk)x(n)x

H(𝑛)𝑎𝑇
∗ (𝜃𝑘)} = aT

T(θk)𝐑aT
∗ (θk),  (12) 

where 𝑹 is the correlation matrix of the transmitted waveforms. To reach the desired bundle 𝜙(𝜃), the covariance 

matrix 𝑹 should minimize the following constrained problem: 

min
𝑹,𝛼

1

𝐾
∑(𝑎𝑇

𝑇(𝜃𝑘)𝑹𝑎𝑇
∗ (𝜃𝑘) − 𝛼𝜙(𝜃𝑘))

2
𝐾

𝑘=1

 (13) 

subject to 𝑣𝐻𝑹𝑣 > 0, for all 𝑣 

𝑹(𝑛, 𝑛) = 𝑐, for 𝑚 = 1,2, ………𝑁,    (14) 



Vol-8 Issue-1 2022               IJARIIE-ISSN(O)-2395-4396 

   

16008 www.ijariie.com 1217 

where 𝐾 is the number of subdivisions of the region of interest, 𝛼 is a weighting factor and 𝑐 is the power transmitted 

by each antenna. Since 𝑅 should be a positive covariance matrix, the first constraint is straightforward. Also, the 

second constraint must be met to achieve maximum energy efficiency. Moreover, depending on the parity of the 

desired bundle 𝜙(𝜃) the designed covariance matrix 𝑅 can contain reals or complex elements. 

Once 𝑅 has been synthesized, the matrix of waveforms X = [x1 x2 … xN]  can easily be obtained using the 

Gaussian RV as follows: 

X = χΛ
1

2𝑊𝐻     (15) 

where X ∈ ∁L×N , 𝑥𝑛 is a vector of symbols transmitted by antenna 𝑛, χ is a matrix with zero mean and unit variance 

Gaussian VR, Λ ∈ ℛ𝑁×𝑁 is the diagonal eigenvalue matrix and 𝑊 is the eigenvector matrix of 𝑅. As 𝑋 is Gaussian, it 

cannot guarantee a finite alphabet solution and may have a high PAPR. 

4. GENERATION OF FINISHED ALPHABET SIGNALS FROM REAL GAUSSIANS VR 

Let 𝜓𝑝𝑞 be the cross-correlation between the finite alphabet waveforms 𝑦𝑝(𝑛) and  𝑦𝑞(𝑛) and 𝜌𝑝𝑞 the cross-

correlation between the null mean Gaussian sharp shapes 𝑥𝑝  (𝑛) and 𝑥𝑞  (𝑛). Thanks to a nonlinear function 𝑓 (. ) 

Without memory, the Gaussian RV 𝑥𝑝 and 𝑥𝑞 can be mapped on the FACE or FANCE RV 𝑦𝑝 = 𝑓(𝑥𝑝) and 𝑦𝑞 =

𝑓(𝑥𝑞). The relationship between the cross-correlation coefficients 𝜓𝑝𝑞  and 𝜌𝑝𝑞 is given by: 

𝜓𝑝𝑞 ≡ ∫ ∫ 𝑦𝑝𝑦𝑞
∗𝑝(𝑥𝑝, 𝑥𝑞 , 𝜌𝑝𝑞)𝑑𝑥𝑝𝑑𝑥𝑞

+∞

−∞

+∞

−∞

, (16) 

where 𝑝(𝑥𝑝 , 𝑥𝑞 , 𝜌𝑝𝑞) ≡
1

2𝜋𝜎𝑝𝜎𝑞√1−𝜌𝑝𝑞
2
𝑒
−

1

2(1−𝜌𝑝𝑞
2 )

[(
𝑥𝑝

𝜎𝑝
)
2
−2(

𝑥𝑝

𝜎𝑝
)(
𝑥𝑞

𝜎𝑞
)
 
+ (

𝑥𝑞

𝜎𝑝
)
2
]

 is the common PDF of x_p and  𝑥𝑞. Here, 𝜎𝑝
2 

and 𝜎𝑞
2  denote the variance of the Gaussian random variables  𝑥𝑝 and 𝑥𝑞 , respectively. To separate the double 

integration in equation (16), the Hermite polynomials are used as in [8] to obtain the following expression:  

𝜓𝑝𝑞 = ∑
𝜌𝑝𝑞
𝑛

2𝑛𝑛!
∫ 𝑓(𝑥𝑝)𝐻𝑛 (

𝑥𝑝

𝜎𝑝√2
) 𝑝(𝑥𝑝)𝑑𝑥𝑝

+∞

−∞
+∞
𝑛=0 ∫ 𝑓(𝑥𝑞)𝐻𝑛 (

𝑥𝑞

𝜎𝑞√2
) 𝑝(𝑥𝑞)𝑑𝑥𝑞

+∞

−∞
               (17) 

where 𝑝 (𝑥) is the PDF of the Gaussian RV real and 𝐻𝑛 (𝑥) are the Hermite polynomial physicists. In our case, like 

𝑥𝑝 and 𝑥𝑞 . have the same variance, i.e. 𝜎𝑝
2 = 𝜎𝑞

2 = 1, the above expression can be further simplified to: 

𝜓𝑝𝑞 =
1

2𝜋
∑ |∫ 𝑓(𝑥)𝐻𝑛 (

𝑥

√2
) 𝑒

𝑥2

2 𝑑𝑥
+∞

−∞

|

+∞

𝑛=0

2

𝜌𝑝𝑞
𝑛

2𝑛𝑛!
 (18) 

If 𝑀 is the number of alphabets in a modulation scheme, the PDF region is divided into 𝑀 regions using the delimiters 

𝛼𝑚, 𝑚 = −
𝑀

2
, … ,0, … ,

𝑀

2
. Depending on the application, the modulation scheme may contain symbols with a different 

appearance probability: 𝑝𝑚, 𝑚 = −
𝑀

2
, … , −1,1, … ,

𝑀

2
 .Therefore, the 𝛼𝑚 delimiters are chosen such as:  

{
 
 

 
 𝛼 ±

𝑀

2
= ±∞,

∫
1

√2𝜋
𝑒−

𝑥2

2

√2𝛼𝑚

√2𝛼𝑚−1

= 𝑝𝑚

 (19) 

In this work, we will focus on the generation of equiprobable symbols, i.e. 𝑝𝑚 =
1

𝑀
 . Thus, taking into account the 

symmetry of the Gaussian PDF function, we can deduce that: 

{
𝛼0 = 0

𝛼𝑖 = −𝛼−𝑖
 for = 1,2, … ,

𝑀

2
 (20) 

Figure 2 illustrates how the Gaussian PDF is divided into 8 regions of equal area to generate 8 equiprobable symbols. 

Moreover, to ensure that 𝜓𝑝𝑞 spans the closed set [-1,1], the memoryless nonlinear mapping function 𝑓(𝑥) must be an 

odd function. Knowing that 𝐻𝑛(−𝑥) = (−1)
𝑛𝐻𝑛(𝑥) [9], we substitute 𝑥̃ =

𝑥

√2
 and the relationship between the 

correlation of Gaussian and mapped RV (18) can be reformulated as: 

𝜓𝑝𝑞 =
1

𝜋
∑

𝜌𝑝𝑞
𝑛

2𝑛𝑛!
|∫ 𝑓(𝑥̃)(𝐻𝑛(𝑥̃) − (−1)𝐻𝑛(𝑥̃))𝑒

−𝑥2𝑑𝑥̃
+∞

0

|

2+∞

𝑛=0

=
2

𝜋
∑

𝜌𝑝𝑞
2𝑛+1

22𝑛(2𝑛 + 1)!
|∫ 𝑓(𝑥̃)𝐻2𝑛+1(𝑥̃)𝑒

−𝑥2𝑑𝑥̃
+∞

0

|

2+∞

𝑛=0

 

 

(21) 

By mapping Gaussian RV between the region ] 𝛼𝑚 − 1, 𝛼𝑚 [  onto a constellation symbol 𝑠𝑚, the above expression can 

be split into a sum of integrals as follows: 
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𝜓𝑝𝑞 =
2

𝜋
∑

𝜌𝑝𝑞
2𝑛+1

22𝑛(2𝑛 + 1)!

+∞

𝑛=0

||∑ 𝑠𝑚

𝑀

2

𝑚=1

∫ 𝐻2𝑛+1(𝑥̃)𝑒
−𝑥2𝑑𝑥̃ 

𝛼𝑚

𝛼𝑚−1

||

2

 (22) 

 

 
               Fig 2: Gaussian PDF divided into 8 equiprobable regions 

The integrals of equation (22) can be expressed as: 

∫ 𝐻2𝑛+1 (𝑥̃)𝑒
−𝑥2𝑑𝑥̃

𝛼𝑚

𝛼𝑚−1

= ∫ 𝐻2𝑛+1 (𝑥̃)𝑒
−𝑥2𝑑𝑥̃

𝛼𝑚

0

−∫ 𝐻2𝑛+1 (𝑥̃)𝑒
−𝑥2𝑑𝑥 = (−1)𝑛

(2𝑛)!

𝑛!
(𝑎𝑛(𝛼𝑚−1) − 𝑎𝑛(𝛼𝑚)) 
̃𝛼𝑚−1

0

 

(23) 

where 𝛼𝑛(𝛼𝑚) =  1𝐹1 (𝑛 +
1

2
,
1

2
, −𝛼𝑚

2 ) is Kummer's confluent hypergeometric function [10]. To illustrate the 

behavior of the power series 𝑎𝑛(𝛼), Figure 3 shows the effect of the index n on its pseudo-period. The power series 

𝑎𝑛 reaches lower values when 𝛼, its oscillation frequency and its index increase. Using (23), the relation in (22) can 

finally be written as follows:  

𝜓𝑝𝑞 = ℱ(𝜌𝑝𝑞) =
2

𝜋
∑

𝜌𝑝𝑞
2𝑛+1(|2𝑛 − 1|)‼ 

(2𝑛 + 1)(2𝑛)‼

+∞

𝑛=0

||∑ 𝑠𝑚(𝑎𝑛(𝛼𝑚−1) − 𝑎𝑛(𝛼𝑚))

𝑀

2

𝑚=1

||

2

 (24) 

Since all the terms of the infinite sum of (24) are positive, with the use of the Schur product theorem [11], we can say 

that if the scalar 𝜌𝑝𝑞 is replaced by a positive semi-defined matrix 𝓡𝒈, the corresponding matrix on the left side is 

guaranteed to be positive and semi-defined. 
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Fig 3: The behavior of the series 𝑎𝑛(𝛼) as a function of 𝛼 

It should also be noted that the relationship between the Gaussian cross-correlation and the corresponding RV 

depends on the chosen delimiters, 𝛼𝑚, 𝑚 = 1,… ,
𝑀

2
− 1, and the symbols 𝑠𝑚, 𝑚 = 1,… ,

𝑀

2
  assigned to each region. 

In the next section, real Gaussian RV is mapped onto the memoryless complex exponential functions to generate 

PSK-modulated RV and match the symmetric beam patterns. These results will be used later to generate PAM and 

QAM modulated waveforms.  

5. GENERATION OF PSK SIGNALS FROM REAL GAUSSIAN RANDOM VARIABLES 

5.1 BPSK wave 

To generate BPSK waveforms, Gaussian random variables are mapped into symbols using the mapping function 

above: 

𝑦 = 𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑥) (25) 

where 𝑠𝑖𝑔𝑛 (·) is the sign function.  

In this case, using ∫ 𝐻2𝑛+1(𝑥̃)𝑒
−𝑥2𝑑𝑥̃

+∞

0
= (−1)𝑛

(2𝑛)!

𝑛!
, we can deduce the relationship between the correlation of 

Gaussian VR and BPSK demonstrated in [12] 

𝜓𝑝𝑞 =
2

𝜋
∑

𝜌𝑝𝑞
2𝑛+1(|2𝑛 − 1|)‼ 

(2𝑛 + 1)(2𝑛)‼

+∞

𝑛=0

=
2

𝜋
sin−1(𝜌𝑝𝑞) 

 

(26) 

5.2  QPSK wave 

To generate QPSK waveforms, the PDF of Gaussian VR is divided into four equal regions and mapped to the symbols 

𝑠𝑚 = {𝑒−𝑗
𝜋

4 , 𝑒−𝑗
3𝜋

4 , 𝑒𝑗
𝜋

4 , 𝑒𝑗
3𝜋

4 } using the function 

𝑦 = 𝑓(𝑥) = 𝑒
[𝑗
𝜋

4
(2𝑠𝑖𝑔𝑛(𝑥)−𝑠𝑖𝑔𝑛(1−

𝑥2

2𝛼1
2))]

 

 = {

𝑒𝑗
𝜋

4  𝑖𝑓 𝑥 ∈ [0, √2𝛼1]

𝑒𝑗
3𝜋

4 𝑖𝑓 𝑥 > √2𝛼1        

−𝑓(−𝑥) 𝑖𝑓 𝑥 < 0                       

 

(27) 

To ensure that all symbols are equiprobable, the delimiter 𝛼1  =  0,4769  is determined using the Inverse Cumulative 

Distribution Function (ICDF) associated with the standard normal distribution, also known as the probit function. 

Using (22), the cross-correlation relationship between Gaussian RV and QPSK can be deduced as shown below:  

𝜓𝑝𝑞 =
2

𝜋
∑

𝜌𝑝𝑞
2𝑛+1

22𝑛(2𝑛 + 1)!

+∞

𝑛=0

|𝑒𝑗
𝜋

4 ∫ 𝐻2𝑛+1(𝑥̃)𝑒
−𝑥2𝑑𝑥̃ +

𝛼1

0

𝑒𝑗
3𝜋

4 ∫ 𝐻2𝑛+1(𝑥̃)𝑒
−𝑥2𝑑𝑥̃

∞

𝛼1

|

2

 

 

(28) 

Using the result in (23), (28) we can rephrase it as: 

𝜓𝑝𝑞 =
2

𝜋
∑

𝜌𝑝𝑞
2𝑛+1(|2𝑛 − 1|)‼ 

(2𝑛 + 1)(2𝑛)‼

+∞

𝑛=0

|𝑒𝑗
𝜋

4(1 − 𝑎𝑛(𝛼1)) + 𝑒
𝑗
3𝜋

4 𝑎𝑛(𝛼1)|
2

 

  =
2

𝜋
∑

𝜌𝑝𝑞
2𝑛+1(|2𝑛 − 1|)‼ 

(2𝑛 + 1)(2𝑛)‼

+∞

𝑛=0

(1 − 2𝑎𝑛(𝛼1) + 2𝑎𝑛(𝛼1)) 

(29) 

5.3 8-PSK wave 

Similarly, applying the probit function, the Gaussian RV are divided into eight regions and mapped over 𝑠𝑚 =

{𝑒−𝑗
𝜋

8 , 𝑒−𝑗
3𝜋

8 , 𝑒−𝑗
5𝜋

8 , 𝑒−𝑗
7𝜋

8 , 𝑒𝑗
𝜋

8 , 𝑒𝑗
3𝜋

8 , 𝑒𝑗
5𝜋

8 , 𝑒𝑗
7𝜋

8 }  using the following mapping function: 

𝑓(𝑥) = 𝑒
[𝑗
𝜋

8
(4 𝑠𝑖𝑔𝑛 (𝑥)−2 𝑠𝑖𝑔𝑛(1−

𝑥2

2𝛼2
2)−𝑠𝑖𝑔𝑛((1−

𝑥2

2𝛼1
2)(1−

𝑥2

2𝛼2
2)(1−

𝑥2

2𝛼3
2)))]

, 

{
  
 

  
 𝑒𝑗

𝜋

8        𝑖𝑓 𝑥 ∈ [0, √2𝛼1],

𝑒𝑗
3𝜋

8 𝑖𝑓 𝑥 ∈ ]√2𝛼1, √2𝛼2],

𝑒𝑗
5𝜋

8 𝑖𝑓 𝑥 ∈]√2𝛼2, √2𝛼3],

𝑒𝑗
7𝜋

8 
              

−𝑓(−𝑥)             

𝑖𝑓 𝑥 > √2𝛼3
𝑖𝑓 𝑥 < 0

 
,

 

(30) 
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Where, for 8-PSK equiprobable symbols, the delimiters are: 

{
𝛼1 = 0.2253
𝛼2 = 0.4769
𝛼3 = 0.8134

 

 

(31) 

In this case, the relationship between the cross-correlation of Gaussian RV and 8-PSK can be derived using (24) as 

follows: 

𝜓𝑝𝑞 =
2

𝜋
∑

𝜌𝑝𝑞
2𝑛+1

22𝑛(2𝑛 + 1)!
|𝑒𝑗

𝜋

8(1 − 𝑎𝑛(𝛼1)) + 𝑒
𝑗
3𝜋

8 (𝑎𝑛(𝛼1) − 𝑎𝑛(𝛼2)) + 𝑒
𝑗
5𝜋

8 (𝑎𝑛(𝛼2) − 𝑎𝑛(𝛼3))

+∞

𝑛=0

+ 𝑒𝑗
7𝜋

8 𝑎𝑛(𝛼3)|
2

 

(32) 

Figure 4 shows the cross-correlation relationship between Gaussian and FACE alphabets (i.e. BPSK, QPSK and 8-

PSK). It can be noticed that the absolute value of the cross-correlation of higher PSK signals is always lower than the 

absolute value of BPSK symbols. 

 
Fig 4: Graph of the relationship between Gaussian RV and FACE 

6. GENERATION OF PAM WAVEFORMS FROM REAL GAUSSIAN RANDOM VARIABLES 

6.1 4-PAM 

To generate the 4-PAM constellation symbols, the mapping function 𝑓 (·) becomes: 

𝑦 = 𝑓(𝑥) =
1

√5
(2 𝑠𝑖𝑔𝑛 (𝑥) − 𝑠𝑖𝑔𝑛 (𝑥 −

𝑥3

2𝛼1
2)) (33) 

 

{
 
 

 
  
1

√5
𝑖𝑓 𝑥 ∈ [0, √2𝛼1]

3

√5
𝑖𝑓 𝑥 > √2𝛼1

−𝑓(−𝑥)   𝑖𝑓 𝑥 < 0 

 

 

(34) 

where, as defined in subsection 5.2, the delimiter 𝛼1  =  0,4769. In this case, the relationship between Gaussian RV 

and 4-PAM symbols can be written as: 

𝜓𝑝𝑞 =
2

5𝜋
∑

𝜌𝑝𝑞
2𝑛+1

22𝑛(2𝑛 + 1)!

+∞

𝑛=0

|∫ 𝐻2𝑛+1(𝑥̃)𝑒
−𝑥2𝑑𝑥̃

𝛼1

0

+ 3∫ 𝐻2𝑛+1(𝑥̃)𝑒
−𝑥̃2𝑑𝑥̃

∞

𝛼1

|

2

 (35) 

Using the result of (23), the above relation can finally be expressed as: 

𝜓𝑝𝑞 =
2

5𝜋
∑

𝜌𝑝𝑞
2𝑛+1(|2𝑛 − 1|)‼ 

(2𝑛 + 1)(2𝑛)‼
(1 + 4𝑎𝑛(𝛼1) + 4𝑎𝑛

2(𝛼1))

+∞

𝑛=0

 (36) 

An approximation of the relationship can be found by minimizing the least squares problem. The following 

approximations have been found to give good results. 
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𝜓𝑝𝑞 ≈
2

𝜋

sin−1(𝜌𝑝𝑞)

0.71 + 0.45𝜌𝑝𝑞
2 + 1.05𝜌𝑝𝑞

4 + 0.89𝜌𝑝𝑞
6
  

𝑎𝑣𝑒𝑐 𝜌𝑝𝑞 =
sin (

𝜋

2
𝜓𝑝𝑞)

0.33 − 0.25𝜓𝑝𝑞
2 − 0.38𝜓𝑝𝑞

4 − 0.30𝜓𝑝𝑞
6

 

(37) 

6.2 8-PAM 

:Using the same delimiters as in (31), the standard normal PDF is split into 8 equiprobable regions and mapped to 8-

PAM symbols as follows: 

𝑦 = 𝑓(𝑥) =
1

√21
(4 𝑠𝑖𝑔𝑛 (𝑥) − 2 𝑠𝑖𝑔𝑛 (1 −

𝑥2

2𝛼2
2)µ − 𝑠𝑖𝑔𝑛 (𝑥 (1 −

𝑥2

2𝛼1
2)(1 −

𝑥2

2𝛼2
2)(1 −

𝑥2

2𝛼3
2))) (38) 

 

{
 
 
 
 
 

 
 
 
 
 

1

√21
𝑖𝑓 𝑥 ∈ [0, √2𝛼1]

3

√21
𝑖𝑓 𝑥 ∈]√2𝛼1, √2𝛼2]

5

√21
𝑖𝑓 𝑥 ∈]√2𝛼1, √2𝛼3]

7

√21
𝑖𝑓 𝑥 > √2𝛼3

−𝑓(−𝑥) 𝑖𝑓 𝑥 < 0
 

 

 
Fig 5: Graph of relationship between Gaussian search vehicles and FANCE 

Applying (24) again in the case of 8-PAM symbols leads to the following relation: 

𝜓𝑝𝑞 =
2

21𝜋
∑

𝜌𝑝𝑞
2𝑛+1

22𝑛(2𝑛 + 1)!
|(1 − 𝑎𝑛(𝛼1)) + 3(𝑎𝑛(𝛼1) − 𝑎𝑛(𝛼2)) + 5(𝑎𝑛(𝛼2) − 𝑎𝑛(𝛼3))

+∞

𝑛=0

+ 7𝑎𝑛(𝛼3)|
2
 

 

(39) 

𝜓𝑝𝑞 =
2

21𝜋
∑

𝜌𝑝𝑞
2𝑛+1

22𝑛(2𝑛 + 1)!

+∞

𝑛=0

|1 + 2 ∑ 𝑎𝑛(𝛼𝑚)

𝑚=3

𝑚=1

|

2

 

Again, using a least squares method, the above relationship (39) can be approximated by: 

𝜓𝑝𝑞 ≈
𝜌𝑝𝑞

1.09 − 0.15𝜌𝑝𝑞
2 + 0.23𝜌𝑝𝑞

4 − 0.17𝜌𝑝𝑞
6

 (40) 

 

𝜌𝑝𝑞 =
sin (

𝜋

2
𝜓𝑝𝑞)

1.45 − 0.43𝜓𝑝𝑞
2 − 0.16𝜓𝑝𝑞

4 + 0.14𝜓𝑝𝑞
6

 (41) 
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A graph of derived relationships is shown in figure 5. It indicates that as the number of symbols increases, the 

relationship between the cross-correlation of Gaussian RV and PAM approaches the identity function. Thus, more 

covariance matrices will remain positive semi-definite when applying the inverse relation ℱ−1. 

7. GENERATION OF QAM SIGNALS FROM COMPLEX GAUSSIAN RANDOM VARIABLES  

If the beam is non-symmetric, for optimal beam matching, 𝑅 will be complex symmetric. For 𝑅 to be complex, the 

waveforms must also be complex. Therefore, based on the PAM signal generation method, Gaussian complex random 

variables are mapped onto QAM alphabets. To generate an M-QAM RV from a complex Gaussian RV 𝑥 =  𝑥𝑅 + 𝑗𝑥𝐼 , 
the following mapping function is used: 

𝑦 = 𝑓𝑄(𝑥)
1

√2
[𝑓𝑃(𝑥𝑅) + 𝑗𝑓𝑃(𝑥𝐼)] (42) 

where 𝑓𝑄  (·) denotes the mapping function used to generate M-QAM symbols while 𝑓𝑃 (. )  denotes the mapping 

function used to generate √𝑀 − 𝑃𝐴𝑀 symbols. 

Consider the semi-definite positive covariance matrix of the Gaussian complex RV 𝑹𝑔. Since the covariance matrix is 

complex, using (15) the matrix of the corresponding correlated complex Gaussian RV can be written as follows   

𝑋 = [xR1 + 𝑗xI1 xR2 + 𝑗xI2 … xR𝑁 + 𝑗xI𝑁] (43) 

Let 𝜓𝑝𝑞  = 𝜓𝑅𝑝𝑞 + 𝑗𝜓𝐼𝑝𝑞   be the complex cross-correlation between the M-QAM RV 𝑦𝑝(𝑛) and 𝑦𝑞(𝑛), and 𝜌𝑝𝑞 =

𝜌𝑅𝑝𝑞 + 𝑗𝜌𝐼𝑝𝑞 let the complex cross-correlation between the Gaussian complex RV 𝑥𝑝(𝑛) and  𝑥𝑞(𝑛). Using (42), we 

can write: 

𝜓𝑅𝑝𝑞 =
1

2
𝐸 {𝑓𝑃 (𝑥𝑅𝑝) 𝑓𝑃 (𝑥𝑅𝑞) + 𝑓𝑃 (𝑥𝐼𝑝) 𝑓𝑃 (𝑥𝐼𝑞)} 

𝜓𝑅𝑝𝑞 =
1

2
𝐸 {𝑓𝑃 (𝑥𝐼𝑝) 𝑓𝑃 (𝑥𝑅𝑞) − 𝑓𝑃 (𝑥𝑅𝑝) 𝑓𝑃 (𝑥𝐼𝑞)} 

 

(44) 

Using a whitening transformation, the waveform vector 𝑋 can satisfy the following relationship: 

𝐸 {𝑥𝑅𝑝𝑥𝑅𝑞} = 𝐸 {𝑥𝐼𝑝𝑥𝐼𝑞} (45) 

 

𝐸 {𝑥𝑅𝑝𝑥𝐼𝑞} = −𝐸 {𝑥𝐼𝑝𝑥𝑅𝑞} (46) 

Thus, we can write: 

𝜓𝑅𝑝𝑞 = 𝐸 {𝑓𝑃 (𝑥𝑅𝑝) 𝑓𝑃 (𝑥𝑅𝑞)} 

𝜓𝐼𝑝𝑞 = 𝐸 {𝑓𝑃 (𝑥𝐼𝑝) 𝑓𝑃 (𝑥𝑅𝑞)} 

 

(47) 

Using (23) and (24), the relationship between the real and imaginary parts of Gaussian complex RV and M-QAM 

symbols can be expressed as a Taylor series. 

7.1 16-QAM 

To generate 16-QAM signals from complex Gaussian RV, the following mapping function is used: 

𝑦 =
1

√2
(𝑓4𝑃𝐴𝑀(𝑥𝑅) + 𝑗𝑓4𝑃𝐴𝑀(𝑥𝑅)) (48) 

where 𝑓4𝑃𝐴𝑀 (·) is as defined in (34) and 𝛼 is chosen equal to 𝛼1  =  0,4769 to guarantee the equivalence of the 16 

symbols. Therefore, from (48) and Section 2.4, the relationship between the cross-correlation of Gaussian RV and 16-

QAM symbols can be deduced as follows:  

𝜓𝑅𝑝𝑞 =
2

5𝜋
∑

𝜌𝑅𝑝𝑞
2𝑛+1(|2𝑛 − 1|)‼ 

(2𝑛 + 1)(2𝑛)‼
|1 + 2𝑎𝑛(𝛼1)|

2

+∞

𝑛=0

 

𝜓𝐼𝑝𝑞 =
2

5𝜋
∑

𝜌𝐼𝑝𝑞
2𝑛+1(|2𝑛 − 1|)‼ 

(2𝑛 + 1)(2𝑛)‼
|1 + 2𝑎𝑛(𝛼1)|

2

+∞

𝑛=0

 

(49) 

7.2 64-QAM 

The following mapping function is used to map complex Gaussian RV to 64-QAM symbols: 

𝑦 =
1

√2
(𝑓8𝑃𝐴𝑀(𝑥𝑅) + 𝑗𝑓8𝑃𝐴𝑀(𝑥𝑅)) (50) 

where 𝑓8𝑃𝐴𝑀(. )  is as defined in (39) and delimiters are chosen as in (31). In this case, the relation between the cross-

correlation of finite alphabets and the Gaussian RV becomes: 
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𝜓𝑅𝑝𝑞 =
2

21𝜋
∑

𝜌𝑅𝑝𝑞
2𝑛+1

22𝑛(2𝑛 + 1)!

+∞

𝑛=0

|1 + 2 ∑ 𝑎𝑛(𝛼𝑚)

𝑚=3

𝑚=1

|

2

 

𝜓𝐼𝑝𝑞 =
2

21𝜋
∑

𝜌𝐼𝑝𝑞
2𝑛+1

22𝑛(2𝑛 + 1)!

+∞

𝑛=0

|1 + 2 ∑ 𝑎𝑛(𝛼𝑚)

𝑚=3

𝑚=1

|

2

 

(51) 

8. PARAMETER ESTIMATION 

As indicated in section 2, the signal received by a moving target located at a location at the angle 𝜃𝑡 in the presence of 

interferers is: 

𝑦(𝑛) = 𝛽𝑡𝑒
𝑗2𝜋𝑓𝑑𝑡𝑛𝑎ℛ(𝜃𝑡)𝑎𝑇

𝑇(𝜃𝑡)x(𝑛) +∑𝛽𝑎ℛ(𝜃𝑖)𝑎𝑇
𝑇x(𝑛) + v(𝑛)

𝐿

𝑖=1

, 𝑛 = 1,2…𝑁 (52) 

where v(𝑛) = [v1(𝑛) v2(𝑛) … vnℛ(𝑛)]
𝑇 is the white Gaussian complex vector zero-mean noise sample and 𝜎𝑛

2 

the variance. In MIMO radar, the waveforms transmitted by all antennas are independent. To maximize Signal to 

Interference Plus Noise (SINR), the received signal is multiplied with the beamformer weight vector, 𝑤, after which 

the received signal can be written:  

𝑤𝐻𝑦(𝑛) = 𝛽𝑖𝑒
𝑗2𝜋𝑓𝑑𝑡𝑛𝑤𝐻𝑎ℛ(𝜃𝑡)𝑎𝑇

𝑇(𝜃𝑡)x(𝑛) +∑𝛽𝑖𝑤
𝐻𝑎ℛ(𝜃𝑖)𝑎𝑇

𝑇(𝜃𝑖)x(n)

𝐿

𝑖=1

+𝑤𝐻v(𝑛) (53) 

If the covariance matrix of the interference plus noise term is denoted by 𝑅𝑖𝑛, the SINR can be defined as: 

𝑆𝑁𝐼𝑅 =
|𝛽𝑖|

2𝐸 {|𝑒2𝑗𝜋𝑓𝑑𝑡𝑛 𝑤𝐻𝑎ℛ(𝜃𝑡)𝑎𝑇
𝑇(𝜃𝑡)x(𝑛)|

2
}

𝑤𝐻ℛinw 
 (54) 

 

where 

ℛ𝑖𝑛 = 𝑛𝑇∑|𝛽𝑖|
2𝑎ℛ(𝜃𝑖)𝑎ℛ

𝐻(𝜃𝑖) + 𝜎𝑛
2𝐼𝑛ℛ 

𝐿

𝑖=1

. (55) 

8.1 Covariance matrix of unknown interference plus noise 

If ℛ𝑖𝑛 is not known, one can find the Capon beamformer [13] to maximize the SINR ratio only from the received 

samples by solving the constraint of the following optimization problem [14]:  

𝑤 = 𝑎𝑟𝑔min
𝑢
 𝑢𝐻ℛ𝑦𝑢 

where 𝑢𝐻𝑎𝑅(𝜃) = 1 

 

(56) 

where ℛ𝑦 is the covariance matrix of the received prototypes. Solving it refers to the following beamformer 

expression:  

𝑤 =
𝑅𝑦
−1𝑎𝑅(𝜃)

𝑎𝑅
𝐻(𝜃)𝑅𝑦

−1𝑎𝑅(𝜃)
 (57) 

To estimate the value of 𝑓𝑑𝑡 , 𝜃𝑡 and 𝛽𝑡 the cost function to be minimized is as follows: 

{𝑓𝑑𝑡 , 𝜃𝑡 , 𝛽𝑡} = 𝑎𝑟𝑔 min
𝑓𝑑,𝜃,𝛽

𝐸 {|𝑤𝐻(𝜃)𝑦(𝑛) − 𝛽𝑒𝑗2𝜋𝑓𝑑𝑛𝑎𝑇
𝑇(𝜃)x(n)|

2
} (58) 

The minimization of the previous cost function with respect to 𝛽 can be found as: 
𝜕𝐽1
𝜕𝛽∗

= 𝐸{𝑎𝑇
𝑇x(𝑛)x𝐻(𝑛)𝑎𝑇

∗ (𝜃) − 𝑒−𝑗2𝜋𝑓𝑑𝑛𝑤𝐻𝑦(𝑛)x𝐻(𝑛)𝑎𝑇
∗ (𝜃)} = 0 (59) 

Since all transmitted waveforms are independent, i.e., 𝐸{x(𝑛)x𝐻(𝑛)} = 𝐼𝑛𝑇 (59) refers to: 

𝛽(𝑓𝑑 , 𝜃) =
1

𝑛𝑇
𝐸{𝑒−𝑗2𝜋𝑓𝑑𝑛𝑤𝐻𝑦(𝑛)x𝐻(𝑛)𝑎𝑇

∗ (𝜃)} (60) 

Using (57), (58) and (59), the cost function to be minimized to estimate 𝑓𝑑𝑡 and 𝜃𝑡 becomes: 

𝐽2 = 𝑤
𝐻(𝜃)𝑹𝒚𝑤(𝜃) −

1

𝑛𝑇
|𝐸{𝑒−𝑗2𝜋𝑓𝑑𝑛𝑤𝐻𝑦(𝑛)x𝐻(𝑛)𝑎𝑇

∗ (𝜃)}|
2
 

=
1

𝑎𝑅
𝐻(𝜃)𝑅𝑦

−1𝑎𝑅(𝜃)
−
1

𝑛𝑇

|𝐸{𝑒−𝑗2𝜋𝑓𝑑𝑛𝑅𝑦
−1𝑦(𝑛)x𝐻(𝑛)𝑎𝑇

∗ (𝜃)}|
2

(𝑎𝑅
𝐻(𝜃)𝑅𝑦

−1𝑎𝑅(𝜃))
2  

 

(61) 
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As shown in appendix B, if there is no interferer, the respective minimization of 𝑓𝑑 and 𝜃 is equivalent to the 

maximization of its second member only. Therefore, if 𝐿 = 0 the problem can be simplified by maximizing the 

following cost function: 

𝐽3 =
|𝐸{𝑒−𝑗2𝜋𝑓𝑑𝑛𝑎𝑅

𝐻𝑅𝑦
−1𝑦(𝑛)x𝐻(𝑛)𝑎𝑇

∗ (𝜃)}|
2

(𝑎𝑅
𝐻(𝜃)𝑅𝑦

−1𝑎𝑅(𝜃))
2  (62) 

Assuming that 𝑟𝑦(𝑛) = 𝑅𝑦
−1𝑦(𝑛), the determination of the waiting operator can be written: 

𝑎(𝑛) = 𝑒−𝑗2𝜋𝑓𝑑𝑛𝑟𝑦(𝑛)x𝐻(𝑛)𝑎𝑇
∗ (𝜃) 

= 𝑒−𝑗2𝜋𝑓𝑑𝑛∑𝑟𝑞
𝑦(𝑛)𝑒−𝑗𝑠𝑖𝑛(𝜃)(𝑞−1)

𝑛𝑅

𝑞=1

∑𝑥𝑝
∗(𝑛)𝑒−𝑗𝑠𝑖𝑛(𝜃)(𝑝−1)

𝑛𝑇

𝑝=1 

 

= 𝑒−𝑗2𝜋𝑓𝑑𝑛∑∑𝑟𝑞
𝑦(𝑛)𝑥𝑝

∗(𝑛)𝑒−𝑗2𝜋𝑓𝑠(𝑝+𝑞−2)
𝑛𝑅

𝑞=1

𝑛𝑇

𝑝=1

 

(63) 

Where 𝑓𝑠 =
sin(𝜃)

2
. By combining the terms of identical frequency, we obtain: 

(𝑛) = (𝑥1(𝑛)𝑟1
𝑦(𝑛) + [𝑥1(𝑛)𝑟2

𝑦(𝑛) + 𝑥2(𝑛)𝑟1
𝑦(𝑛)]𝑒−𝑗2𝜋𝑓𝑠

+ [𝑥1(𝑛)𝑟3
𝑦(𝑛) + 𝑥2(𝑛)𝑟2

𝑦(𝑛) + 𝑥3(𝑛)𝑟1
𝑦(𝑛)]𝑒−𝑗2𝜋𝑓𝑠2 +⋯ 

+ 𝑥𝑛𝑇(𝑛)𝑟𝑛𝑅
𝑦 (𝑛)𝑒−𝑗2𝜋𝑓𝑠(𝑛𝑇+𝑛𝑅−2 ) 𝑒−𝑗2𝜋𝑓𝑑𝑛  

(64) 

Therefore, one can find that: 

𝐸{𝑎(𝑛)} =
1

𝑁
∑ ∑ 𝑓(𝑛,𝑚)

𝑛𝑇+𝑛𝑅−2

𝑚=0

𝑁−1

𝑛=0

𝑒−𝑗2𝜋𝑓𝑑𝑛 𝑒−𝑗2𝜋𝑓𝑠  (65) 

Where 𝑓(𝑛,𝑚) = ∑ 𝑥𝑖(𝑛)𝑟𝑚+2−𝑖
𝑦

(𝑛)
𝑛𝑇  
𝑖=1  

Interestingly, the right side of (65) is similar to the famous 2d-FFT expression. Therefore, if there is no interferer, the 

target and the Doppler frequency can be jointly estimated through the use of 2D-FFT as follows:  

𝑓𝑑𝑡 , 𝑓𝑠𝑡 = 𝑎𝑟𝑔max
𝑓𝑑,𝑓𝑠

|
∑ ∑ 𝑓(𝑛,𝑚)

𝑛𝑇+𝑛𝑅−2
𝑚=0

𝑁−1
𝑛=0 𝑒−𝑗2𝜋𝑓𝑠𝑒−𝑗2𝜋𝑓𝑑𝑛

𝑎𝑓  𝑅
𝐻(𝑓𝑠)𝑅𝑦

−1𝑎𝑓   𝑅(𝑓𝑠)
| (66) 

Where :  

𝑎𝑓𝑅
(𝑓𝑠) = [1 𝑒2𝑗𝜋𝑓𝑠 …… 𝑒2(𝑛𝑅−1)𝑗 𝜋 𝑓𝑠 ]

𝑇 (67) 

Finally, an estimator of 𝜃𝑡 can be formulated as follows: 

𝜃̂𝑡 = sin
−1(2 𝑓𝑠𝑡) 

 
(68) 

8.2 Known interference and noise covariance matrix 

If the covariance matrix of the interference plus noise noise term 𝑅𝑖𝑛 is known, the Capon beamformer that maximizes 

the SINR is the solution to the following optimization problem: 

𝐽 = 𝑤𝐻𝑅𝑖𝑛𝑤 + 𝜆(𝑤
𝐻𝑎𝑅(𝜃) − 1) (69) 

where 𝜆 is the Lagrange multiplier. It can be derived as follows: 

𝑤 =
𝑅𝑖𝑛
−1𝑎𝑅(𝜃)

𝑎𝑅
𝐻𝑅𝑖𝑛

−1𝑎𝑅(𝜃)
 (70) 

As the above expression (70) is very similar to the one presented in (57), one can easily verify that the derivations of 

the estimators are also similar. Thus, in the presence of interferers, we substitute expression (70) for (61), and the cost 

function to be minimized becomes: 

𝐽4 =
𝑎𝑅
𝐻𝑅𝑖𝑛

−1𝑅𝑦
 𝑅𝑛

−1𝑎𝑅(𝜃)

(𝑎𝑅
𝐻(𝜃)𝑅𝑖𝑛

−1𝑎𝑅(𝜃))
2 +

1

𝑛𝑇

|𝐸{𝑒−𝑗2𝜋𝑓𝑑𝑛𝑎𝑅
𝐻𝑅𝑦

−1𝑦(𝑛)x𝐻(𝑛)𝑎𝑇
∗ (𝜃)}|

2

(𝑎𝑅
𝐻(𝜃)𝑅𝑖𝑛

−1𝑎𝑅(𝜃))
2  

 

(71) 

Which, in the case of noise alone, can be simplified to maximize the cost function below: 

𝐽5 =
|𝐸{𝑒−𝑗2𝜋𝑓𝑑𝑛𝑎𝑅

𝐻𝑅𝑦
−1𝑦(𝑛)x𝐻(𝑛)𝑎𝑇

∗ (𝜃)}|
2

(𝑎𝑅
𝐻(𝜃)𝑅𝑖𝑛

−1𝑎𝑅(𝜃))
2  (72) 

Because the noise samples are uncorrelated, i.e. 𝑅𝑖𝑛 = 𝜎𝑛
2𝐼𝑛𝑅, the denominator becomes independent of 𝜃. Therefore, 

we can write: 
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𝑓𝑑𝑡 , 𝑓𝑠𝑡 = max
𝑓𝑑,𝑓𝑠

|∑ ∑ 𝑓(𝑛,𝑚)

𝑛𝑇+𝑛𝑅−2

𝑚=0

𝑁−1

𝑛=0

𝑒−𝑗2𝜋𝑓𝑑𝑛 𝑒−𝑗2𝜋𝑓𝑠𝑚|

2

 (73) 

Where : 

𝑓(𝑛,𝑚) =∑𝑥𝑖(𝑛)𝑟𝑚+2−𝑖
𝑖𝑛 (𝑛) 

𝑛𝑇

𝑖=1

 (74) 

And : 

𝑟𝑖𝑛(𝑛) = 𝑅𝑖𝑛
−1𝑦(𝑛) (75) 

As the number of samples is usually much larger than the number of transmitting and receiving antennas, i.e. 𝑁 ≫
(𝑛𝑇 + 𝑛𝑅), the resolution of the Doppler frequency 𝑓𝑑 is greater than the spatial frequency resolution 𝑓𝑠. 
 

9. CONCLUSION 

The MIMO radar concept differs from that of conventional radar by the use of several antennas both for transmission 

and reception, as well as by the particularity of the different waveforms transmitted. The main advantage of MIMO 

radar is spatial diversity, which has improved the system's capabilities compared to a radar system in terms of 

resolution, identification parameters, transmission beam synthesis and diversity gain. The performances in detection, 

localization and tracking of moving targets have shown that the integration of MIMO technology within the radar 

system offers better performance. 
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