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ABSTRACT 

  
In this paper, we analyze and compare various available ways to implement priority queues. A Priority 

queue is an abstract data type which is like a regular queue, but where additionally each element has a 

priority key associated to it [1]. The key serves as a way of sorting out the elements of the priority queue. 

One can imagine a case of vehicles running on the road. Certain vehicles like ambulances need more 

priority than any other. VIP vehicles come second and so on. Here, this signifies the relevance of priority. 

Similarly in operating systems jobs may be scheduled as per their importance this can be achieved 

through priority queues. The primary focus of this paper is to analyze various available ways of 

implementing priority queues, which could later form as basis when devising a new approach or method 

to improve the efficiency of priority queues. We compare the priority queues on the basis of their running 

time efficiencies and compare their running time bounds in the worst cases. This paper also forms the 

basis for our next work, where we show, how the concept of memory pooling can be effectively used in 

improving the efficiency of the priority queues.  
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1. INTRODUCTION 

A priority queue is a data structure for maintaining a set S of elements, each with an associated value called a key. A 

priority queue must at least support the following operations [1]: 

 

INSERT (S, x) inserts the element x into set S, which is equivalent to the operation S = S U {x}. 

 

MAXIMUM(S) returns the element of S with the largest key. 

 

EXTRACT-MAX(S) removes and returns the element of S with the largest key. 

 

More advance implementation of priority queues may support more complicated operations, pull lowest priority 

element, inspecting the first few highest- or lowest-priority elements, clearing the queue, clearing subsets of the 

queue, performing a batch insert, merging two or more queues into one, incrementing priority of any element, etc. 

 

An efficient algorithm is one which executes in less time and requires less memory space. In today‟s times space 

complexity (defined in terms of input given at a time based on memory required) is not of much concern because of 

good storage system with very large memory can always be attached and a program with size greater than the 

memory can be executed (example- virtual memory). This brings us to a conclusion that time is much more 

important concern than space. A user is always expecting an output within zero seconds of providing the input. 

However, this is not practically possible. The aim of this work is to summarize and compare the running time, worst 

case efficiencies of already available advanced implementations of priority queues. 
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1.1 Big Oh Notation, O 

The notation O(n) is the formal way to express the upper bound of an algorithm‟s running time. It measures the 

worst case time complexity or the longest amount of time an algorithm can possibly take to complete. 

 
Figure1: Big O notation‟s graphical representation. 

 

For example, for a function f(n) 

O(f(n)) = { g(n) : there exists c > 0 and no no such that f(n) ≤ c.g(n) for all n > n0 }    

 

Following is the list of some common asymptotic notations:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table -1: Common Asymptotic Notations 

 

Constant − Ο(1) 

Logarithmic − Ο(log n) 

Linear − Ο(n) 

n log n − Ο(n log n) 

Quadratic − Ο(n
2
) 

Cubic − Ο(n
3
) 

Polynomial − n
Ο(1)

 

Exponential − 2
Ο(n)
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1.2 Data Flow of Priority Queue Operations  

The following figure 2. shows the relative flow of data in priority queue data structure. Data as input is inserted. If 

the queue is full, an overflow condition is observed. Remove operation remove elements and if the queue becomes 

empty and underflow condition is observed. 

 
 

Figure 2: Diagrammatic view of Data flow in priority queues. 

 

2. Various Available Implementations of Priority Queues  
 

2.1 Simple Implementation Using Number System 

In The simple implementation of priority queues we have performed all main operations insert, delete and display 

using a very simple logic. Here, we have used two variables rear and front to track the elements of priority queue on 

every operation. We use simple number system to check the working and output of the code. Every element is 

compared to previous one in terms of its priority (which is also provided by the user) therefore there is no 

consideration of optimization in this code. Comparing and swapping (in case of higher priority) makes this code 

very general and inefficient for real time data or large data. 

  

2.1.1 Complexity Analysis  

Complexity of a code is generally calculated by analyzing the no. of assignments or comparison in a statement 

multiplied to no. of times that statement is supposed to run in a single call. Here our main focus is on worst case 

complexity therefore we will look for maximum no. of times a statement can be executed. 

Insert- while inserting an element it is compared to the element at front end and if the priority of element at front is 

higher than current element that it is swapped with it. For this a- for loop can run maximum rear*rear times and rear 

can have maximum value n (no. of elements). So the worst case complexity is O(n^2) 

Delete-deletion simply takes place from front end so it is O(1). 

Overall complexity = O(n^2) 

2.2 Extended Simple Implementation Using Arrays 

There are several possible implementations of priority queues one simplest is through arrays. In this algorithm we 

have tried to optimize the operations we used in previous algorithm .Arrays are linear data structures use to store 

data sequentially of a particular size. The highest-priority element is requested, search through all elements for the 

one with the highest priority. Another approach is to add code for insert to move larger entries one position to the 

right, thus keeping the entries in the array in order (as in insertion sort). Thus the largest item is always at the end, 

and the code for remove the maximum in the priority queue is the same as for pop in the stack.  
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2.2.1 Complexity Analysis  

In this code (insertion) insertion of new data is followed by shifting the existing data in right hence giving the 

complexity of order n this not  very efficient as it shifting and comparing takes considerable time and the overall 

complexity is affected.  

On the other hand removal is of order 1. Because the element with highest priority is always found at the front end 

of the queue and can be easily removed. The overall complexity is calculated by adding up the complexities 

obtained by inserting and deleting the data. 

Insert-while inserting an element, (from right) it is compared from the element to its right and this is done till the 

0
th

 index of array is reached hence giving the complexity O(n). 

Delete-deletion simply takes place from one end so it is O(1). 

Overall complexity = O(n) 

2.3 Linked List Implementation 

In the link lists implementation we use link list data structures to implement priority queues. The core 

implementation of link lists can be seen in c/c++. Link lists are more dynamic data structures and are useful when 

fast retrieval of dynamic data is needed [5]. In this research we have also found that one way of inserting and 

extracting the elements of priority queues is by link lists. However on comparing it with other implementations it 

can be inferred that it is efficient for few operations but not fully optimized among all the implementations.  

2.3.1 Complexity Analysis 

 

Insert-while inserting an element, the entire link list is traversed since in link lists data is inserted sequentially 

giving the complexity of O(n). 

Delete-data is popped from one end directly (by maintaining the pointers ) hence deletion if of O(1) 

Overall complexity = O(n) 

 

2.4 Priority Queues Using Heaps  

A heap is a specific tree based nonlinear data structure in which all the nodes of tree are in a specific order. Let‟s say 

if X is a parent node of Y, then the value of X follows some specific order with respect to value of Y and the same 

order will be followed across the tree. In the more commonly used heap type, there are at most 2 children of a node 

and it's known as a Binary heap [6]. 

This is the usual implementation of priority queues. 

 

 

Figure 3: Diagrammatic view of a heap tree (Max.). 

Suppose there are N Jobs in a queue to be done, and each job has its own priority. The job with maximum priority 

will get completed first than others. At each instant we are completing a job with maximum priority and at the same 

time we are also interested in inserting a new job in the queue with its own priority. This task can be very easily 

executed using a heap by considering N jobs as N nodes of the tree. 
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As you can see in the figure-3, we can use an array to store the nodes of the tree. Let‟s say we have 7 elements with 

values {6, 4, 5, 3, 2, 0, 1}. 

Note: An array can be used to simulate a tree in the following way. If we are storing one element at index „i‟ in array 

„Ar‟, then its parent will be stored at index i/2 (unless it‟s a root, as root has no parent) and can be access by Ar[ i/2 

], and its left child can be accessed by Ar[ 2 * i ] and its right child can be accessed by Ar[ 2 * i +1 ]. Index of root 

will be 1 in an array. 

2.4.1 Max Heap: In this type of heap, the value of parent node will always be greater than or equal to the value of 

child node across the tree and the node with highest value will be the root node of the tree. 

2.4.2 Implementation: 

Let‟s assume that we have a heap having some elements which are stored in array Arr. The way to convert this array 

into a heap structure is the following. We pick a node in the array, check if the left sub-tree and the right sub-tree are 

max heaps in themselves and the node itself is a max heap (it‟s value should be greater than all the child nodes) 

void max_heapify (int Arr[ ], int i, int N){ 

    int left = 2*i                   //left child 

    int right = 2*i +1           //right child 

    if(left<= N and Arr[left] > Arr[i] ) 

    largest = left; 

    else 

         largest = i; 

    if(right <= N and Arr[right] > Arr[largest] ) 

        largest = right; 

    if(largest != i ){ 

        swap (Ar[i] , Arr[largest]); 

        max_heapify (Arr, largest,N); 

    }  } 

 

we have N elements stored in the array Arr indexed from 1 to N. They are currently not following the property of 

max heap. So we can use max-heapify function to make a max heap out of the array. 

2.4.2.1 Efficient Approach: 

We can use heaps to implement the priority queue. It will take O(log N) time to insert and delete each element in the 

priority queue. Based on heap structure, priority queue also has two types max- priority queue and min - priority 

queue. Let‟s focus on Max Priority Queue. Max Priority Queue is based on the structure of max heap and can 

perform following operations: 

maximum(Arr) : It returns maximum element from the Arr. 

extract_maximum (Arr) - It removes and return the maximum element from the Arr. 

increase_val (Arr, i , val) - It increases the key of element stored at index i in Arr to new value val.  

insert_val (Arr, val ) - It inserts the element with value val in Arr. 

Implementation: 

length = number of elements in Arr. 

2.4.2.1.1 Maximum : 

 int maximum(int Arr[ ]){ 
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        return Arr[ 1 ];  //as the maximum element is the root element in the max heap. 

   } 

Complexity: O(1) 

2.4.2.1.2 Extract Maximum:  

In this operation, the maximum element will be returned and the last element of heap will be placed at index 1 and 

max_heapify will be performed on node 1 as placing last element on index 1 will violate the property of max-heap. 

int extract_maximu-m (int Arr[ ]){ 

    if(length == 0){ 

cout<< “Can‟t remove element as queue is empty”; 

        return -1; 

    } 

    int max = Arr[1]; 

    Arr[1] = Arr[length]; 

    length = length -1; 

    max_heapify(Arr, 1); 

    return max; 

} 

Complexity: O(log N). 

2.4.2.1.3 Increase Value: 

In case increasing value of any node, may violate the property of max-heap, so we will swap the parent‟s value with 

the node‟s value until we get a larger value on parent node. 

void increase_value (int Arr[ ], int i, int val){ 

    if(val < Arr[ i ]){ 

        cout<<”New value is less than current value, can‟t be inserted” <<endl; 

        return; 

    } 

    Arr[ i ] = val; 

    while( i > 1 and Arr[ i/2 ] < Arr[ i ]){ 

        swap|(Arr[ i/2 ], Arr[ i ]); 

        i = i/2; 

    }} 

Complexity: O(log N). 

2.4.2.1.4Insert Value: 

void insert_value (int Arr[ ], int val){ 

    length = length + 1; 

    Arr[ length ] = -1;  //assuming all the numbers greater than 0 are to be inserted in queue. 

    increase_val (Arr, length, val); 

} 

Complexity: 

Insert-As discussed above, like heaps we can use priority queues in scheduling of jobs. When there are N jobs in 

queue, each having its own priority. If the job with maximum priority will be completed first and will be removed 

from the queue, we can use priority queue‟s operation extract_maximum here. If at every instant we have to add a 

new job in the queue, we can use insert_value operation as it will insert the element in O(log (N)) and will also 

maintain the property of max heap, this is because insertion requires a comparison with element of above levels 

which can go till height of heap tree i.e. log(N). 
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Delete- Deletion is performed from the root therefore deletion from root followed by the re heapification each time 

takes time equal to height of the heap tree giving complexity of O(log(N)). 

Hence the overall complexity is O(log(N)). 

2.5 Fibonacci Heap:  

Fibonacci heap is a specialized data structure used mainly for implementing priority queues in computer science. It 

consists of a patching of heap ordered trees. It has better running time than many other priority queue data structures 

including the ones which are discussed above. Michael L. Fredman and Robert E. Tarjan developed this. They 

named it so after the Fibonacci numbers, which are used in their running time analysis. 

2.5.1 Implementation [2]:  

Make-Fibonacci-Heap() 

n[H] := 0 

min[H] := NIL  

return H 

 

Fibonacci-Heap-Minimum(H) 

return min[H] 

 

Fibonacci-Heap-Link(H,y,x) 

remove y from the root list of H 

make y a child of x 

degree[x] := degree[x] + 1 

mark[y] := FALSE 

 

CONSOLIDATE(H) 

for i:=0 to D(n[H]) 

     Do A[i] := NIL 

for each node w in the root list of H 

    do x:= w 

       d:= degree[x] 

       while A[d] <> NIL 

    do y:=A[d] 

       if key[x]>key[y] 

  then exchange x<->y 

       Fibonacci-Heap-Link(H, y, x) 

       A[d]:=NIL 

             d:=d+1 

       A[d]:=x 

min[H]:=NIL 

for i:=0 to D(n[H]) 

    do if A[i]<> NIL 

          then add A[i] to the root list of H 

               if min[H] = NIL or key[A[i]]<key[min[H]] 

                  then min[H]:= A[i] 

 

Fibonacci-Heap-Union(H1,H2) 

H := Make-Fibonacci-Heap() 

min[H] := min[H1] 

Concatenate the root list of H2 with the root list of H 

if (min[H1] = NIL) or (min[H2] <> NIL and min[H2] < min[H1]) 

   then min[H] := min[H2] 
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n[H] := n[H1] + n[H2] 

free the objects H1 and H2 

return H 

  

  

Fibonacci-Heap-Insert(H,x) 

degree[x] := 0 

p[x] := NIL 

child[x] := NIL 

left[x] := x 

right[x] := x 

mark[x] := FALSE 

concatenate the root list containing x with root list H 

if min[H] = NIL or key[x]<key[min[H]] 

 then min[H] := x 

n[H]:= n[H]+1 

 

Fibonacci-Heap-Extract-Min(H) 

z:= min[H] 

if x <> NIL 

 then for each child x of z 

   do add x to the root list of H 

      p[x]:= NIL 

      remove z from the root list of H 

      if z = right[z] 

                then min[H]:=NIL 

                else min[H]:=right[z] 

                     CONSOLIDATE(H) 

             n[H] := n[H]-1 

return z 

 

Fibonacci-Heap-Decrease-Key(H,x,k) 

if k > key[x] 

   then error "new key is greater than current key" 

key[x] := k 

y := p[x] 

if y <> NIL and key[x]<key[y] 

   then CUT(H, x, y) 

 CASCADING-CUT(H,y)  

if key[x]<key[min[H]] 

   then min[H] := x 

  

CUT(H,x,y) 

Remove x from the child list of y, decrementing degree[y] 

Add x to the root list of H 

p[x]:= NIL 

mark[x]:= FALSE 

 

CASCADING-CUT(H,y) 

z:= p[y] 

if z <> NIL 

  then if mark[y] = FALSE 

       then mark[y]:= TRUE 

       else CUT(H, y, z) 

     CASCADING-CUT(H, z) 
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Fibonacci-Heap-Delete(H,x) 

Fibonacci-Heap-Decrease-Key(H,x,-infinity) 

Fibonacci-Heap-Extract-Min(H) 

 

2.5.2 Complexity Analysis: 

Operation find minimum is now trivial because we keep the pointer to the node containing it. It does not change the 

potential of the heap, therefore both actual and amortized cost are constant. merge is implemented simply by 

concatenating the lists of tree roots of the two heaps. This can be done in constant time and the potential does not 

change, leading again to constant amortized time. Operation insert works by creating a new heap with one element 

and doing merge. This takes constant time, and the potential increases by one, because the number of trees increases. 

The amortized cost is thus still constant. 

3. CONCLUSION 

By analyzing all notations asymptotically for the worst case behavior it can be seen that heap implementation of 

priority queue has the best running time complexity. It can be concluded that for a large data set priority queues 

using heap can give results in no more than O(log n) time, making it much more efficient than any other way of 

implementation of priority queues. It has been established now that priority queues work best with heaps when being 

used upon large volume of data. We shall now work on memory pooling with heaps to better improve the overall 

efficiency of priority queues.  

 
 

Type of implementation Complexity 

 insert delete display 

Simple implementation O(n^2) O(1) O(1) 

Extended O(n) O(1) O(1) 

Link Lists O(n) O(1) O(n) 

Heaps O(log n) O(log n) O(log n) 

Fibonacci Heap  O(1) O( log n) O(1) 

 

Table -2: Comparative Analysis 
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