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ABSTRACT 
 Line clipping process often requires repeating clipping algorithm. One method for improving the efficiency 

of a line clipping algorithm is to reduce the repetition of algorithm. An efficient clipping algorithm is presented here 

to acquire this goal. The paper exhibit various line clipping algorithms on the basis of their working principles. In 

this paper a comparison is made for different line clipping algorithms used in computation.  One algorithm is region 

codes are used to identify the position of line. One algorithm reduces intersection calculations. Other one is based on 

testing XY plane to reduce intersection calculation. Which is the best suited line clipping algorithm can only be 

decided by comparing the available algorithms in different aspects. 
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1. INTRODUCTION    

 Clipping is one of the fundamental problems of the computational geometry with applications in various areas of 

computer graphics, visualization and computer-aided design system. Any procedure, which identifies those portions 

of picture that are either inside or outside of the specified region of the space is referred to as a clipping algorithm. 

The region against which an object is to clip is called a clip window. Clipping, which is a basic operation to several 

aspects of computer graphics, include two elements: the clipping window which could be rectangle, circle, convex 

window, concave window or open window, and the object to be clipped which could be line, polygon, circle, 

character or irregular curves. Different combination of the two elements and different clipping strategies lead to 

various algorithm. Among all algorithms, line clipping against the rectangle window receives special attentions [5]. 

The traditional line clipping algorithms include Cohen-Sutherland line clipping algorithm [6], Liang-Barsky line 

clipping algorithm [7], Cyrus-Beck line clipping algorithm [2] and Nicholl-Lee-Nicholl line clipping algorithm [9]. 

The major disadvantage of this algorithm is that it can only be applied to two-dimensional clipping [7]. Until recently, 

most works are concentrated on accelerating the intersection calculation so as to improve the clipping efficiency 

[11][13][14]. 

 

2. LINE CLIPPING USING RECTANGULAR WINDOW 

A line clipping procedure involves several parts. First, test a given line segment to determine whether it lays 

completely inside the clipping window. If it does not, try to determine whether it lies completely outside the window. 

Finally, if cannot identify a line as completely inside or completely outside, then, perform intersection calculations 

with one or more clipping boundaries and process lines through the "inside-outside'' tests by checking the line 

endpoints [7]. 
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Fig -1. Line clipping against a rectangular clip window 

 A line with both endpoints inside all clipping boundaries, such as the line from P3 to P4, is saved. A line with 

both endpoints outside any one of the clip boundaries (line P5P6) is outside the window. All other lines cross one or 
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more clipping boundaries, and may require calculation of multiple intersection points. To minimize calculations, try 

to devise clipping algorithms that can efficiently identify outside lines and reduce intersection calculations [7][12]. 

 For a line segment with endpoints (x1, y1) and (x2. y2) and one or both endpoints outside the clipping rectangle, 

the parametric representation 

   x = x1 + u (x2 – x1) 

   y = y1 + u (y2 – y1), 0 < u < 1 

could be used to determine values of parameter u for intersections with the clipping boundary coordinates. If the 

value of u for an intersection with a rectangle boundary edge is outside the range 0 to 1, the line does not enter the 

interior of the window that boundary. If the value of u is within the range from 0 to 1, the line segment does indeed 

cross into the clipping area. This method can be applied to each clipping boundary edge in turn to determine whether 

any part of the line segment is to be displayed. Line segments that are parallel to window edges can be handled as 

specia1 cases. Clipping line segments with these parametric tests require a good deal of computation, and faster 

approaches to clipping are possible. A number of efficient line clippers have been developed and some algorithms are 

designed explicitly for two-dimensional pictures and some are easily adapted to three-dimensional applications [1][7]. 

2.1 Cohen-Sutherland Line Clipping  

 This is one of the oldest and most popular line clipping procedures. Generally, the method speeds up the 

processing of line segments by performing initial tests that reduce the number of intersections that must he calculated. 

Every line endpoint in a picture is assigned a four-digit binary code, called a region code, which identifies the 

location of the point relative to the boundaries of the clipping rectangle. Regions are set up in reference to the 

boundaries [7]. 

 

 

 

 

 

 

 
Fig -1: Four binary region codes with respect to the clipping rectangle. 

 Each bit position in the region code is used to indicate one of the four relative coordinate positions of the point 

with respect to the clip window: to the left, right, top, or bottom. By numbering the bit positions in the region code as 

1 through 4 from right to left, the coordinate regions can be correlated with the bit positions as bit 1: left, bit 2: right, 

bit 3: below, bit 4: above [8]. 

 A value of 1 in any bit position indicates that the point is in that relative position; otherwise, the bit position is set 

to 0. If a point is within the clipping rectangle, the region code is 0000. A point that is below and to the left of the 

rectangle has a region code of 0101. Bit values in the region code are determined by comparing endpoint coordinate 

values (x, y) to the clip boundaries. Bit 1 is set to 1 if x < xwmin. The other three-bit values can be determined using 

similar comparisons. For languages in which bit manipulation is possible, region-code bit values can be determined 

with the following two steps: 

 (1) Calculate differences between endpoint coordinates and clipping boundaries.  

 (2) Use the resultant sign bit of each difference calculation to set the corresponding value in the region code. Bit 

1 is the sign bit of x - xwmin; bit 2 is the sign bit of xwmax- x; bit 3 is the sign bit of y - ywmin and bit 4 is the 

sign bit of ywmax- y [8]. 

 The steps of clipping lines using the Cohen-Sutherland algorithm are following: 

- Starting with the endpoint of the line from p1 to p2, checked p1 against the left, right, below, and above boundaries 

in turn and find that this point is below the clipping rectangle.  

- Then find the intersection point p1' with the below boundary and discard the line section from p1 to p1'. 

- The line has been reduced to the section from p1' to p2. 

- Since p2 is outside the clip window, check this endpoint against the boundaries and find that it is to the left and 

above of the window and therefore, intersection point p2' is calculated. 

- But this point is above the window, so the final intersection calculation yields p2'' and the line from p1' to p2'' is 

saved [4]. 
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Fig-2: Line extending from one coordinate region to another. 

 Intersection points with a clipping boundary can be calculated using the slop-intercept form of the line equation. 

For a line with endpoint coordinates(x1, y1) and (x2, y2), the y coordinate of the intersection point with a vertical 

boundary can be obtained with the calculation  

y = y1 + m(x – x1)  (1) 

Where the x value is set either to xwmin or to xwmax, and the slope of the line is calculated as 

m = (y2 – y1) / (x2 – x1). 

For the intersection with a horizontal boundary, the x coordinate can be calculated as 

x = x1 + (y – y1) / m  (2) 

with y set either to ywmin or to ywmax [1][7]. 

The pseudo code of Cohen-Sutherland line clipping algorithm is as follows: 

1.  Assign a region code for two endpoints of given line. 

2. If both endpoints have a region code 0000 then given line is completely inside. 

3. Else, perform the logical AND operation for both region codes. 

   i. If the result is not 0000, then given line is completely outside. 

   ii. Else line is partially inside. 

      - Choose an endpoint of the line that is outside the given rectangle. 

      - Find the intersection point of the rectangular boundary (based on region code). 

      - Replace endpoint with the intersection point and update the region code. 

      - Repeat step 2 until we find a clipped line either trivially accepted or trivially rejected. 

4. Repeat step 1 for other lines 

2.2. Liang-Barsky Line Clipping 

Faster line clippers have been developed that are based on analysis of the parametric equation of a line segment in the 

form 

x = x1 + r *Δx 

y = y1 + r *Δy, 0 < r < 1 

where Δx = x2 - x1 and Δy = y2 - y1. 

For a point (x,y) inside the clipping window,  

    xwmin < x1 + r *Δx < xwmax 

    ywmin < y1 + r *Δy < ywmax 

These four inequalities can be expressed as  

r *pj < qj, j = 1, 2, 3, 4 

Where parameter p and q are defined as  

    p1 = – ∆x, q1 = x1 – xwmin (left) 

    p2 =  ∆x,  q2 = xwmax –  x1 (right) 

    p3 = – ∆y, q3 = y1 – ywmin (below) 

    p4 = ∆y,  q4 =  ywmax – y1 (above) 

From the above definitions of parameters, the following observations can be easily made. 

- If pj = 0, the line is parallel to one of the clipping boundaries corresponding correspinding the value of j. 

- If qj < 0, the line is completely outside the boundary and can be eliminated. 

- If qj > 0 the line is inside the boundary and need further consideration. 

- If pj < 0, the line proceeds from the outside to inside of the corresponding boundary line.  

- If pj > 0, the line proceeds from the inside to outside of the corresponding boundary line.  

- If pj ≠ 0, calculate the value of r that corresponds to the point where the infinitely extended line intersects the 

extension of boundary j as   
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     r =  qj / pj 

 The Liang-Barsky algorithm for finding the visible portion of the line, if any, can be stated as a four step  

process: 

(i) If pj = 0 and qj < 0, for any j, eliminates the line and stop otherwise proceed to next step.  

(ii) For all j such that pj < 0 calculate uj  =  qj / pj. Let r1 be the maximum of the set containing 0 and the various 

values of r.  

(iii) For all j such that pj > 0 calculate uj = qj / pj. Let r2 be the minimum of the set containing 1 and the 

calculated u value.  

(iv) If r1 > r2, eliminate the line because it is completely outside the clipping window otherwise, use  and  to 

calculate the endpoints of the clipped line [1][7].   

The algorithm of Liang-Barsky line clipping  is as follows:  

1. Read two endpoints of the line say p1 (x1, y1) and p2 (x2, y2). 

2. Read two corners left-top ( xwmin, ywmax) and right-bottom (xwmax, ywmin) of the window. 

3. Calculate the values of parameters pj and qj for  

   p1 = – ∆x, q1 = x1 – xwmin 

   p2 =  ∆x,  q2 = xwmax –  x1 

   p3 = – ∆y, q3 = y1 – ywmin 

   p4 = ∆y,  q4 =  ywmax – y1 

4. If pj = 0, then 

 { The line is parallel to j
th

 boundary. 

  If qj < 0 then 

  { line is completely outside the boundary, discard the line segment and goto stop. 

  } 

  else 

  { Check whether the line is horizontal or vertical and accordingly check the line endpoint with corresponding 

boundaries. If line endpoint(s) lie within the bounded area then use them to draw line otherwise use boundary 

coordinates to draw line. Go to stop. 

  } 

5. Initialise values for r1 and r2 as 

   r1 = 0 and r2 = 1 

6. Calculate values for qj / pj for j= 1, 2, 3, 4. 

7. Select values of qj / pj where pj < 0 and and assign maximum out of them as r1. 

8. Select values of qj / pj where pj > 0 and and assign manimum out of them as r2. 

9. If (r1 < r2) 

  { Calculate the endpoints of the clipped line as follows: 

 xx1 = x1 + r1 Δx 

 xx2 = x1 + r2 Δx 

 

    yy1 = y1 + r1 Δy 

    yy2 = y1 + r2 Δy 

    Draw line (xx1, xx2, yy1, yy2 ) 

  } 

10. Stop. 

2.3. Nicholl-Lee-Nicholl Line Clipping 

 Nicholl-Lee-Nicholl (or NLN) algorithm avoids multiple clipping of an individual line segment by creating more 

regions around the clip window. NLN line clipping algorithm makes four rays which pass an endpoint of the line 

segment and four vertices of the window, and creates three regions by the four rays. Then, the algorithm determines 

which region that the line segment lies in, and finds the intersections or rejects the line segment. Before finding the 

intersection points of the line segment and the window, the algorithm first determines the position of the first 

endpoint of the line segment for the nine possible regions relative to the clipping window. If the point is not in one of 

the three especial regions (in the clip window, edge & corner), the algorithm has to transform the point to one of the 

three especial regions [12]. 
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Fig-3: Four clipping regions used in NLN algorithm. 

The Algorithm of edge region case of the Nicholl-Lee-Nicholl line-clipping algorithm is as below: 

procedure LeftEdgeRegionCase (ref real x1, y1, x2, y2; ref boolean visible) 

begin 

real dx, dy; 

if x2 < xmin  

 then visible = false; 

 else if y2 < ymin  

 then LeftBottom (xmin, ymin, xmax, ymax, x1, y1, x2, y2, visible) 

 else if y2 > ymax 

  then 

   begin   {Use symmetry to reduce to LeftBottom case} 

    y1 = – y1; y2 = – y2; {reflect about x-axis} 

    LeftBottom (xmin, -ymax, xmax, -ymin, x1, y1, x2, y2, visible); 

    y1 = – y1;  y2 = – y2; {reflect back} 

   end 

  else 

   begin 

    dx = x2 – x1;  dy = y2 – y1; 

    if x2 > xmax then 

     begin 

      y2 = y1 + dy * (xmax – x1) / dx; 

      x2 = xmax; 

     end; 

    y1 = y1 + dy * (xmin – x1) / dx; 

    x1 = xmin; 

    visible = true; 

   end 

 end 

 procedure LeftBottom (real xmin, ymin, xmax, ymax; ref real x1, y1, x2, y2; ref boolean visible) 

 begin 

  real dx, dy, a, b, c; 

  dx = x2 – x1;  dy = y2 – y1; 

  a = (xmin – x1)* dy; b = (ymin – y1)* dx; 

  if b > a 

   then visible = false {(x2, y2) is below ray from (x1, y1) to bottom left corner}    

   else 

    begin 

     visible = ture; 

     if x2 < xmax 

      then 

       begin  

        x2 = x1 + b / dy;  

        y2 = ymin; 

       end 

      else 

       begin 

        c = (xmax – x1) * dy; 

        if b > c 

         then {(x2, y2) is between rays from (x1, y1) to bottom left and right corner} 

          begin 
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           x2 = x1 + b / dy;  

           y2  = ymin; 

          end 

         else 

          begin 

           y2 = y1 + c / dx; 

           x2 = xmax; 

          end 

       end; 

    end; 

  y1 = y1 + a / dx; 

  x1 = xmin; 

 end; 

 

3. COMPARATIVE STUDY AND DISCUSSION 

 Liang-Barsky algorithm is intersection calculations can be reduced, so more efficient than the Cohen-Sutherland 

algorithm. Each update of parameters r1 and r2 requires only one division and window intersections of the line are 

computed only once, when the final values of r1 and r2 have been computed[15]. In contrast, the Cohen-Sutherland 

algorithm can repeatedly calculate intersections along a line path, even though the line may be completely outside the 

clip window. And, each intersection calculation requires both a division and a multiplication [7]. 

 Although Nicholl-Lee-Nicholl algorithm achieves lesser comparisons and divisions which make it faster than 

others it is difficult to expand for three-dimensional clipping [10]. The major disadvantage of this algorithm is that it 

can only be applied to two-dimensional clipping scenes but Liahg-Barsky and Cohen-Sutherland methods are easily 

extended to three-dimensional scenes. In the Cohen-Sutherland method, for example, multiple intersections may be 

calculated along the path of a single line before an intersection on the clipping rectangle is located or the line is 

completely rejected. These extra intersection calculations are eliminated in the NLN algorithm by carrying out more 

regions testing before intersection positions are calculated. Compared to both the Cohen-Sutherland and the Liang-

Barsky algorithms, the Nicholl-Lee-Nicholl algorithm performs fewer comparisons and divisions [7]. 

 

4. CONCLUSIONS 

Clipping is indispensable technique in computer graphics, and as such it has been studied very extensively in 

the past. Nowadays, the problem is very often considered as solved in many aspects, that this is indeed true. The 

fundamental problem in algorithm design is to use all known data properties as much as possible in order to get an 

algorithm with better efficiency. If this factor is used in algorithm design, it is possible not only to improve 

algorithms property but sometimes also to vary the algorithms complexity. This argument is proved very clearly in 

this paper by analyzing three algorithms for line clipping. Generally, to improve a better algorithm for the given 

problem, need to consider the following issues:  

- the trade-off between run-time memory and preprocessing (time or memory) complexities,  

- what kind of preprocessing complexity is need to faster solution of the given problem,  

- the use of pre-processing or parallel and distributed.  

The presented algorithms proved that applying these approaches can bring a significant speed-up even with 

the known algorithms. In today, need to outmatch with large amounts of available data not only to visualize, but also 

to make it as realistic and as fast as possible. Therefore, any improvement in solving the line clipping algorithm is 

always welcome. 
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