
Vol-5 Issue-4 2019 IJARIIE-ISSN(O)-2395-4396

10713 www.ijariie.com 1149

COMPARISON OF VARIOUS LINE CLIPPIN

ALGORITHMS

Htwe Htwe Aung

Lecturer, Faculty of Computer Science, University of Computer Studies, Pathein, Myanmar

ABSTRACT
 Line clipping process often requires repeating clipping algorithm. One method for improving the efficiency

of a line clipping algorithm is to reduce the repetition of algorithm. An efficient clipping algorithm is presented here

to acquire this goal. The paper exhibit various line clipping algorithms on the basis of their working principles. In

this paper a comparison is made for different line clipping algorithms used in computation. One algorithm is region

codes are used to identify the position of line. One algorithm reduces intersection calculations. Other one is based on

testing XY plane to reduce intersection calculation. Which is the best suited line clipping algorithm can only be

decided by comparing the available algorithms in different aspects.

Keyword: Line Clipping Algorithms, Cohen-Sutherland, Liang-Barsky, Nicholl-Lee-Nicholl, Comparative.

1. INTRODUCTION

 Clipping is one of the fundamental problems of the computational geometry with applications in various areas of

computer graphics, visualization and computer-aided design system. Any procedure, which identifies those portions

of picture that are either inside or outside of the specified region of the space is referred to as a clipping algorithm.

The region against which an object is to clip is called a clip window. Clipping, which is a basic operation to several

aspects of computer graphics, include two elements: the clipping window which could be rectangle, circle, convex

window, concave window or open window, and the object to be clipped which could be line, polygon, circle,

character or irregular curves. Different combination of the two elements and different clipping strategies lead to

various algorithm. Among all algorithms, line clipping against the rectangle window receives special attentions [5].

The traditional line clipping algorithms include Cohen-Sutherland line clipping algorithm [6], Liang-Barsky line

clipping algorithm [7], Cyrus-Beck line clipping algorithm [2] and Nicholl-Lee-Nicholl line clipping algorithm [9].

The major disadvantage of this algorithm is that it can only be applied to two-dimensional clipping [7]. Until recently,

most works are concentrated on accelerating the intersection calculation so as to improve the clipping efficiency

[11][13][14].

2. LINE CLIPPING USING RECTANGULAR WINDOW

A line clipping procedure involves several parts. First, test a given line segment to determine whether it lays

completely inside the clipping window. If it does not, try to determine whether it lies completely outside the window.

Finally, if cannot identify a line as completely inside or completely outside, then, perform intersection calculations

with one or more clipping boundaries and process lines through the "inside-outside'' tests by checking the line

endpoints [7].
′

Fig -1. Line clipping against a rectangular clip window

 A line with both endpoints inside all clipping boundaries, such as the line from P3 to P4, is saved. A line with

both endpoints outside any one of the clip boundaries (line P5P6) is outside the window. All other lines cross one or

P2

P3

P4

P5

P7
P6

P8

 P1

Window

Before Clipping

P2

P3

P4

P7′

P8′

P1′

Window

After Clipping

Vol-5 Issue-4 2019 IJARIIE-ISSN(O)-2395-4396

10713 www.ijariie.com 1150

more clipping boundaries, and may require calculation of multiple intersection points. To minimize calculations, try

to devise clipping algorithms that can efficiently identify outside lines and reduce intersection calculations [7][12].

 For a line segment with endpoints (x1, y1) and (x2. y2) and one or both endpoints outside the clipping rectangle,

the parametric representation

 x = x1 + u (x2 – x1)

 y = y1 + u (y2 – y1), 0 < u < 1

could be used to determine values of parameter u for intersections with the clipping boundary coordinates. If the

value of u for an intersection with a rectangle boundary edge is outside the range 0 to 1, the line does not enter the

interior of the window that boundary. If the value of u is within the range from 0 to 1, the line segment does indeed

cross into the clipping area. This method can be applied to each clipping boundary edge in turn to determine whether

any part of the line segment is to be displayed. Line segments that are parallel to window edges can be handled as

specia1 cases. Clipping line segments with these parametric tests require a good deal of computation, and faster

approaches to clipping are possible. A number of efficient line clippers have been developed and some algorithms are

designed explicitly for two-dimensional pictures and some are easily adapted to three-dimensional applications [1][7].

2.1 Cohen-Sutherland Line Clipping

 This is one of the oldest and most popular line clipping procedures. Generally, the method speeds up the

processing of line segments by performing initial tests that reduce the number of intersections that must he calculated.

Every line endpoint in a picture is assigned a four-digit binary code, called a region code, which identifies the

location of the point relative to the boundaries of the clipping rectangle. Regions are set up in reference to the

boundaries [7].

Fig -1: Four binary region codes with respect to the clipping rectangle.

 Each bit position in the region code is used to indicate one of the four relative coordinate positions of the point

with respect to the clip window: to the left, right, top, or bottom. By numbering the bit positions in the region code as

1 through 4 from right to left, the coordinate regions can be correlated with the bit positions as bit 1: left, bit 2: right,

bit 3: below, bit 4: above [8].

 A value of 1 in any bit position indicates that the point is in that relative position; otherwise, the bit position is set

to 0. If a point is within the clipping rectangle, the region code is 0000. A point that is below and to the left of the

rectangle has a region code of 0101. Bit values in the region code are determined by comparing endpoint coordinate

values (x, y) to the clip boundaries. Bit 1 is set to 1 if x < xwmin. The other three-bit values can be determined using

similar comparisons. For languages in which bit manipulation is possible, region-code bit values can be determined

with the following two steps:

 (1) Calculate differences between endpoint coordinates and clipping boundaries.

 (2) Use the resultant sign bit of each difference calculation to set the corresponding value in the region code. Bit

1 is the sign bit of x - xwmin; bit 2 is the sign bit of xwmax- x; bit 3 is the sign bit of y - ywmin and bit 4 is the

sign bit of ywmax- y [8].

 The steps of clipping lines using the Cohen-Sutherland algorithm are following:

- Starting with the endpoint of the line from p1 to p2, checked p1 against the left, right, below, and above boundaries

in turn and find that this point is below the clipping rectangle.

- Then find the intersection point p1' with the below boundary and discard the line section from p1 to p1'.

- The line has been reduced to the section from p1' to p2.

- Since p2 is outside the clip window, check this endpoint against the boundaries and find that it is to the left and

above of the window and therefore, intersection point p2' is calculated.

- But this point is above the window, so the final intersection calculation yields p2'' and the line from p1' to p2'' is

saved [4].

0000

Window

1000

 0001

0010

0100

Below

Above

Left Right

0101

1001

0110

1010

Vol-5 Issue-4 2019 IJARIIE-ISSN(O)-2395-4396

10713 www.ijariie.com 1151

Fig-2: Line extending from one coordinate region to another.

 Intersection points with a clipping boundary can be calculated using the slop-intercept form of the line equation.

For a line with endpoint coordinates(x1, y1) and (x2, y2), the y coordinate of the intersection point with a vertical

boundary can be obtained with the calculation

y = y1 + m(x – x1) (1)

Where the x value is set either to xwmin or to xwmax, and the slope of the line is calculated as

m = (y2 – y1) / (x2 – x1).

For the intersection with a horizontal boundary, the x coordinate can be calculated as

x = x1 + (y – y1) / m (2)

with y set either to ywmin or to ywmax [1][7].

The pseudo code of Cohen-Sutherland line clipping algorithm is as follows:

1. Assign a region code for two endpoints of given line.

2. If both endpoints have a region code 0000 then given line is completely inside.

3. Else, perform the logical AND operation for both region codes.

 i. If the result is not 0000, then given line is completely outside.

 ii. Else line is partially inside.

 - Choose an endpoint of the line that is outside the given rectangle.

 - Find the intersection point of the rectangular boundary (based on region code).

 - Replace endpoint with the intersection point and update the region code.

 - Repeat step 2 until we find a clipped line either trivially accepted or trivially rejected.

4. Repeat step 1 for other lines

2.2. Liang-Barsky Line Clipping

Faster line clippers have been developed that are based on analysis of the parametric equation of a line segment in the

form

x = x1 + r *Δx

y = y1 + r *Δy, 0 < r < 1

where Δx = x2 - x1 and Δy = y2 - y1.

For a point (x,y) inside the clipping window,

 xwmin < x1 + r *Δx < xwmax

 ywmin < y1 + r *Δy < ywmax

These four inequalities can be expressed as

r *pj < qj, j = 1, 2, 3, 4

Where parameter p and q are defined as

 p1 = – ∆x, q1 = x1 – xwmin (left)

 p2 = ∆x, q2 = xwmax – x1 (right)

 p3 = – ∆y, q3 = y1 – ywmin (below)

 p4 = ∆y, q4 = ywmax – y1 (above)

From the above definitions of parameters, the following observations can be easily made.

- If pj = 0, the line is parallel to one of the clipping boundaries corresponding correspinding the value of j.

- If qj < 0, the line is completely outside the boundary and can be eliminated.

- If qj > 0 the line is inside the boundary and need further consideration.

- If pj < 0, the line proceeds from the outside to inside of the corresponding boundary line.

- If pj > 0, the line proceeds from the inside to outside of the corresponding boundary line.

- If pj ≠ 0, calculate the value of r that corresponds to the point where the infinitely extended line intersects the

extension of boundary j as

p2'

Window

p1'

p1

p2''

p2

Vol-5 Issue-4 2019 IJARIIE-ISSN(O)-2395-4396

10713 www.ijariie.com 1152

 r = qj / pj

 The Liang-Barsky algorithm for finding the visible portion of the line, if any, can be stated as a four step

process:

(i) If pj = 0 and qj < 0, for any j, eliminates the line and stop otherwise proceed to next step.

(ii) For all j such that pj < 0 calculate uj = qj / pj. Let r1 be the maximum of the set containing 0 and the various

values of r.

(iii) For all j such that pj > 0 calculate uj = qj / pj. Let r2 be the minimum of the set containing 1 and the

calculated u value.

(iv) If r1 > r2, eliminate the line because it is completely outside the clipping window otherwise, use and to

calculate the endpoints of the clipped line [1][7].

The algorithm of Liang-Barsky line clipping is as follows:

1. Read two endpoints of the line say p1 (x1, y1) and p2 (x2, y2).

2. Read two corners left-top (xwmin, ywmax) and right-bottom (xwmax, ywmin) of the window.

3. Calculate the values of parameters pj and qj for

 p1 = – ∆x, q1 = x1 – xwmin

 p2 = ∆x, q2 = xwmax – x1

 p3 = – ∆y, q3 = y1 – ywmin

 p4 = ∆y, q4 = ywmax – y1

4. If pj = 0, then

 { The line is parallel to j
th

 boundary.

 If qj < 0 then

 { line is completely outside the boundary, discard the line segment and goto stop.

 }

 else

 { Check whether the line is horizontal or vertical and accordingly check the line endpoint with corresponding

boundaries. If line endpoint(s) lie within the bounded area then use them to draw line otherwise use boundary

coordinates to draw line. Go to stop.

 }

5. Initialise values for r1 and r2 as

 r1 = 0 and r2 = 1

6. Calculate values for qj / pj for j= 1, 2, 3, 4.

7. Select values of qj / pj where pj < 0 and and assign maximum out of them as r1.

8. Select values of qj / pj where pj > 0 and and assign manimum out of them as r2.

9. If (r1 < r2)

 { Calculate the endpoints of the clipped line as follows:

 xx1 = x1 + r1 Δx

 xx2 = x1 + r2 Δx

 yy1 = y1 + r1 Δy

 yy2 = y1 + r2 Δy

 Draw line (xx1, xx2, yy1, yy2)

 }

10. Stop.

2.3. Nicholl-Lee-Nicholl Line Clipping

 Nicholl-Lee-Nicholl (or NLN) algorithm avoids multiple clipping of an individual line segment by creating more

regions around the clip window. NLN line clipping algorithm makes four rays which pass an endpoint of the line

segment and four vertices of the window, and creates three regions by the four rays. Then, the algorithm determines

which region that the line segment lies in, and finds the intersections or rejects the line segment. Before finding the

intersection points of the line segment and the window, the algorithm first determines the position of the first

endpoint of the line segment for the nine possible regions relative to the clipping window. If the point is not in one of

the three especial regions (in the clip window, edge & corner), the algorithm has to transform the point to one of the

three especial regions [12].

Vol-5 Issue-4 2019 IJARIIE-ISSN(O)-2395-4396

10713 www.ijariie.com 1153

Fig-3: Four clipping regions used in NLN algorithm.

The Algorithm of edge region case of the Nicholl-Lee-Nicholl line-clipping algorithm is as below:

procedure LeftEdgeRegionCase (ref real x1, y1, x2, y2; ref boolean visible)

begin

real dx, dy;

if x2 < xmin

 then visible = false;

 else if y2 < ymin

 then LeftBottom (xmin, ymin, xmax, ymax, x1, y1, x2, y2, visible)

 else if y2 > ymax

 then

 begin {Use symmetry to reduce to LeftBottom case}

 y1 = – y1; y2 = – y2; {reflect about x-axis}

 LeftBottom (xmin, -ymax, xmax, -ymin, x1, y1, x2, y2, visible);

 y1 = – y1; y2 = – y2; {reflect back}

 end

 else

 begin

 dx = x2 – x1; dy = y2 – y1;

 if x2 > xmax then

 begin

 y2 = y1 + dy * (xmax – x1) / dx;

 x2 = xmax;

 end;

 y1 = y1 + dy * (xmin – x1) / dx;

 x1 = xmin;

 visible = true;

 end

 end

 procedure LeftBottom (real xmin, ymin, xmax, ymax; ref real x1, y1, x2, y2; ref boolean visible)

 begin

 real dx, dy, a, b, c;

 dx = x2 – x1; dy = y2 – y1;

 a = (xmin – x1)* dy; b = (ymin – y1)* dx;

 if b > a

 then visible = false {(x2, y2) is below ray from (x1, y1) to bottom left corner}

 else

 begin

 visible = ture;

 if x2 < xmax

 then

 begin

 x2 = x1 + b / dy;

 y2 = ymin;

 end

 else

 begin

 c = (xmax – x1) * dy;

 if b > c

 then {(x2, y2) is between rays from (x1, y1) to bottom left and right corner}

 begin

p1

T

T
TR

TB LB

L

T

p1

T T

R

L

B

L

L R

R

p1

LT

L LR

LB

L

LT

Vol-5 Issue-4 2019 IJARIIE-ISSN(O)-2395-4396

10713 www.ijariie.com 1154

 x2 = x1 + b / dy;

 y2 = ymin;

 end

 else

 begin

 y2 = y1 + c / dx;

 x2 = xmax;

 end

 end;

 end;

 y1 = y1 + a / dx;

 x1 = xmin;

 end;

3. COMPARATIVE STUDY AND DISCUSSION

 Liang-Barsky algorithm is intersection calculations can be reduced, so more efficient than the Cohen-Sutherland

algorithm. Each update of parameters r1 and r2 requires only one division and window intersections of the line are

computed only once, when the final values of r1 and r2 have been computed[15]. In contrast, the Cohen-Sutherland

algorithm can repeatedly calculate intersections along a line path, even though the line may be completely outside the

clip window. And, each intersection calculation requires both a division and a multiplication [7].

 Although Nicholl-Lee-Nicholl algorithm achieves lesser comparisons and divisions which make it faster than

others it is difficult to expand for three-dimensional clipping [10]. The major disadvantage of this algorithm is that it

can only be applied to two-dimensional clipping scenes but Liahg-Barsky and Cohen-Sutherland methods are easily

extended to three-dimensional scenes. In the Cohen-Sutherland method, for example, multiple intersections may be

calculated along the path of a single line before an intersection on the clipping rectangle is located or the line is

completely rejected. These extra intersection calculations are eliminated in the NLN algorithm by carrying out more

regions testing before intersection positions are calculated. Compared to both the Cohen-Sutherland and the Liang-

Barsky algorithms, the Nicholl-Lee-Nicholl algorithm performs fewer comparisons and divisions [7].

4. CONCLUSIONS

Clipping is indispensable technique in computer graphics, and as such it has been studied very extensively in

the past. Nowadays, the problem is very often considered as solved in many aspects, that this is indeed true. The

fundamental problem in algorithm design is to use all known data properties as much as possible in order to get an

algorithm with better efficiency. If this factor is used in algorithm design, it is possible not only to improve

algorithms property but sometimes also to vary the algorithms complexity. This argument is proved very clearly in

this paper by analyzing three algorithms for line clipping. Generally, to improve a better algorithm for the given

problem, need to consider the following issues:

- the trade-off between run-time memory and preprocessing (time or memory) complexities,

- what kind of preprocessing complexity is need to faster solution of the given problem,

- the use of pre-processing or parallel and distributed.

The presented algorithms proved that applying these approaches can bring a significant speed-up even with

the known algorithms. In today, need to outmatch with large amounts of available data not only to visualize, but also

to make it as realistic and as fast as possible. Therefore, any improvement in solving the line clipping algorithm is

always welcome.

5. REFERENCES

[1] Abhishek Pandey, Swati Jain, Takshshila Institute of Engineering and Technology, International Journal of

Modern Engineering Research (2013) pp-69-74.

[2] Cyrus M. and Beck J. (1978) Generalized Two- and Three-Dimensional Clipping, Computers and Graphics

3 (1): 23-28.

[3] Day JD. A new two-dimensional ling clipping algorithm for small windows, Computer Graphics Forum

1992; 11(4): 241-5.

Vol-5 Issue-4 2019 IJARIIE-ISSN(O)-2395-4396

10713 www.ijariie.com 1155

[4] Donald Hearn, and M. Pauline Baker, Computer Graphics, C Version, 3 edition, pp. 226-230, December

2004.

[5] Goudong Lu*, Xuanhui Wu, Qunsheng Peng, An efficient line clipping algorithm-based o adaptive line

rejection, Computers & Graphics 26 (2002) 409-415.

[6] Hearn, D. and Baker, M. P. (1998) Computer Graphics, C Version, 2nd Edition, Prentice Hall, Inc., Upper

Saddle River, p. 224-248.

[7] Huang, W. (2010) The Line Clipping Algorithm Basing on Affine Transformation, Intelligent Information

Management, 2,380-2385, (http://www. SciRP.org /journal/iim).

[8] Mohammad Saber Iraji, H. Motameni, Ayda Mazandarani, An Efficient Line Clipping Algorithm based on

Cohen-Sutherland Line Clipping Algorithm, American Journal of Scientific Research (2011), pp.65-71.

[9] Nicholl, T. M. Lee, D. T. and Nicholl, R. A. (1987) An Efficient New Algorithm for 2D Line Clipping: Its

Development and Analysis, Computers and Graphics 21(4): 253-262.

[10] R. Kodituwakku, K. R. Wijeweera, M. A. P. Chamikara, An Efficient Line Clipping Algorithm for 3D

Space, International Journal of Advanced Research in Computer Science and Software Engineering Volume

2, Issue 5, May 2012.

[11] Sharma NC, Manohar S. Line clipping revisited: two efficient algorithms based on simple geometric

observations. Computers and Graphics 1992; 16(1): 51–4.

[12] S. R. Kodituwakku1, K. R. Wijeweera, M. A. P. Chamikara, An Efficient Algorithm for Line Clipping in

Computer Graphics Programming, Ceylon Journal of Science (Physical Sciences) 17 (2013), pp.1-7.

[13] Wang Haohong, Wu Ruixun, Cai Shijie. A new efficient clipping algorithm basedon geometric

transformation, Journal of Software 1998; 9(10): 728–33 (in Chinese).

[14] Wang Jun, Liang Youdong, Peng Qunsheng. A 2-D lineclipping with the least arithmetic operations,

Chinese Journal of Computers 1991 ;(7): 495–504(in chinese).

[15] Vaclav Skala, Pavel Lederbush, A comparison of a new O(1) and the Cyrus-Beck line clipping algorithms in

E, COMPUGRAPHICS 96 Int.Conf., Paris, 1996.

