
Vol-3 Issue-2 2017    IJARIIE-ISSN(O)-2395-4396    

 

4610 www.ijariie.com 3596 

CAR ROAD FIGHTER GAME 

DEVELOPMENT USING UNITY3D 
 

Rohan Bhagat
1
, Rohit Bhanore

2
, Pooja Bangar

3
, Prof. A.E. Patil

4
 

 
1 2 3

Student, Information Technology, Rajiv Gandhi Institute of Technology, Maharashtra, India 

 
4 
Faculty, Information Technology, Rajiv Gandhi Institute of Technology, Maharashtra, India 

 

ABSTRACT 
Abstract—   Game designing is a really interactive and creative part of modern IT culture. This has motivated 

various developers to create interesting games. Thus, we aim to develop an entertaining and fun game based on our 

childhood favour where we are focusing on developing a 3D racing car game, using a process based upon agile 

development; an evolutionary development method. Our game is a single player game which provides multiplayer 

functionality as well. The game will consist of various road maps with power boost challenges and speed timing to 

get user more addictive and entertain. 

Since it is a racing genre game, the multiplayer gaming will focus on races with friends and let the users compete to 

be the best. Apart from this even time depended mode enables players to track and beat their own high scores. The 

platform of the game is developed using Unity 3D game engine which is multiplatform software building for games 

and main coding is in C#. Hence whole game development process will cover implementation of real-time graphics, 

physics engine, network support, as well as sound effects and background music. Thus we will try to create a game 

which is extremely entertaining with great graphics to make it visually appealing. 

 

 

Keywords: Unity engine, 3D car racing, roadmaps, multiplayer, Entertaining game. 

 
1. INTRODUCTION 

Developing software applications is a time-consuming process, and with time-consuming  processes come high 

costs. To address this issue, several software development methodologies, agile software development, have become 

widely used by software developers. One of the software development methodologies is the evolutionary software 

method, which allows the project to evolve through different stages of the project and this approach worked on our 

project where we choose to develop a 3D graphic computer game. Some requirements for the computer game 

development to 3D environment like 3D graphics, graphical effects, multi-platform. We decided to develop this 

game in Unity3D platform which gives better working these requirements. 

 

The game is a single player type in racing genre. A racing game is one in which the player generally races other 

vehicles to secure first position. Unlike the racing genre, we feature only the main player car which has to beat the 

time set by AI. As a car is vehicle which needs petrol to continue its speed, in our game we will serve power boost 

on the ways to user alive on the game. The speed and power boost are two main objectives for user while playing 

with game. The multiplayer type game maximum six player can play same game with their respective environment 

while races other vehicles to secure first position. For multiplayer game users need to connect each other by LAN 

cable (Desktop version) and WLAN for android users. 

 

To develop 3D game we have need develop 3D gaming objects, environment and UI, we should use Adobe tools. 

Adobe tools are also helpful for gaming effects for better graphics. As unity is multiplatform engine, we decided to 

develop game for desktop (windows platform) and android users. So our final product will be run on windows as 

well as android devices. 

 

 



Vol-3 Issue-2 2017    IJARIIE-ISSN(O)-2395-4396    

 

4610 www.ijariie.com 3597 

 

 

2. STEPS IN GAME DEVELOPMENT 

2.1 Conceptualization and Initialization  
The game development process includes conceptualization of the gaming idea. The game play, the age group, the 

ratings, game mechanics are all decided in this phase of game development. Various researches are also done to see 

that the idea is unique and also that it can be implemented. 

 

2.2 Game Design Document 
A game design document (GDD) is a highly descriptive Living design document of the design for a game. A GDD is 

created and edited by the development team and it is primarily used in the game industry to organize efforts within a 

development team.  

 

2.3 Technical Requirements 
It includes deciding on the platform based on the targeted audience. The tools and the materials required for the 

game design are also decided in this phase. For our project we would use windows for development of whole 

process with Unity tool to be installed. Other than Unity we would need software like Adobe tools for creating 3D 

objects. For android users we would use SDK tool and android device. 

 

2.4 Modelling art and Level Designing 
Based on the game concept, the theme and genre are finalized. In our case, the genre is Role playing. Design Game 

objects and strategically defining levels of game are main aspect by point of user testing mode. This phase should be 

define to user point of view which will comes more attentions. 

 

2.5 3D model & Environment art 
Game objects are an integral part of game for developing 3D model. In this phase, the different game objects are 

designed using the various software. Using adobe tools we should create 3D models of cars and maps.  

 

2.6 Developing UI 
The user interface, the menu are developed in this phase. The menu is define for users to get in to right direction in 

game flow. To define UI, we would use C# codes in unity platform. The Game menu will contains different items 

like play game, controls, sound and single-player or multi-player mode. 

 

2.7 Adding Features & Mathematics 
Different algorithm and mathematics are used for score calculation; these features and algorithm are added in this 

phase. The attraction of users are more when there are some features like points, records to get in play game. The 

physics involved in the game is also added. (Example: collision detection, path finding—A* algorithm etc). 

 

2.8 Regression & Integration 
After the pre requisites of game are developed. The game development process involves different level of phases 

while developing one game. This phase includes integrating all the phases to create a responsive and functional 

game. 

 

2.9 Testing & Fixing Bugs: 
The developed game is tested on android and windows platform to see if the game features are working well on the 

device. Also it is checked to see it supports the various devices and android versions Alpha-Beta testing is 

performed. If any problem is encountered, it is rectified. 

 

 

3. SCREEN FLOW OF GAME DESIGN 

The table 1 given,gives a  comparison of the various technologies used in Health Monitoring Systems and highlights  

The car road fighter is the racing genre game of cars on road maps. The screen flow is the window for view of users. 

When user will play game then screen of device is important by user point of view. Thus flow of screen should be in 

static manner. In our game, first of all it show Menu for user interface when open the game. Menu will contains 



Vol-3 Issue-2 2017    IJARIIE-ISSN(O)-2395-4396    

 

4610 www.ijariie.com 3598 

different options like New Game, sounds, controls, options Player name etc. 

 

As shown in fig.1 , to play game we have to select mode, car and map. Figure show static plan of game how to be 

process to view by user at a time of playing game. 

There are 6 different car model and 5 different maps in game design. User can choose any one car and map at a time 

and play the Game. 

 

In single-player game, we feature only the main player car which has to beat the time set by AI. The game play on 

user device only and specific to user need only. Player can select car and map to play the game. So single player 

strategy is simple to play for user and can play by any type of player like first time playing the game. 

 

 

 
FIG.1: Screen flow of Game 

 

Whereas, In Multi-player, six users can connect through network and play game between them to compute each 

other to secure first rank in the game. The game can consist of one host device to hosting the game and other will 

join the game on host server. The hosted device will select the map in this case. As selection of car are user specific 

for multiplayer mode. 

 

 

4. GAMING MECHANICS 

Every game that is played today is composed of some very common game mechanics: path finding, collision 

detection and input. These game mechanics have been around now for decades and have been improved on 

throughout the years. Here a few very common game mechanics should be use for thesis project. 

 

4.1 Collision Detection 
The simplest definition of collision detection in relation to games is to determine if two rectangles in the same 2D or 

3D space are overlapping. The determining factors for what method of collision detection to use depending on the 

game design and precision of the collision data needed. In Unity there is a method already created to help any game 

enthusiast create a game involving collision detection. The method is called On Collision Enter (Collision). It is used 

in every game design. 

 

 



Vol-3 Issue-2 2017    IJARIIE-ISSN(O)-2395-4396    

 

4610 www.ijariie.com 3599 

4.2 Finite State Machine 
A finite state machine at the simplest form is a model of how a system or a game will behave. Depending on the 

input from the player the state of the game can change. Each of the games described in the thesis project use a finite 

state machine to some extent. 

 

4.3 Timer 
The car racing game mainly work with timer to describe user ranking. Timer is main part of our methodology while 

working. In Unity a timer is constructed by using a local or global variable set to the desired time in seconds. Then 

just subtract Time.deltaTime from the variable which will decrease it by 1 second. 

 

4.4 Path Finding 
The general definition of path finding is plotting a path from a start point to an end point, done by a computer 

program or algorithm which is applied to a graph. In many cases the shortest path is the subject of interest to find. In 

the case of video games it is the same except it is done for a character or group of troops and it plots a path around 

obstacles on a map. 

 

4.5 Dijkstra’s Algorithm 
It is most used in networking; routers use it to find the shortest path from a computer to a web address the web 

browser is searching for. It builds a list of hops it needs to take to get to the final address of the web address. This is 

done be-cause each hop to the next router is given a weight, and so it finds the route with the lowest weight cost and 

uses that for the route. 

 

4.6 A* Search Algorithm 
Using this method allows the algorithm to eliminate longer paths based off this approximation, in turn speeding up 

the resolution of the shortest path. Using this heuristic approach makes this algorithm faster than the Dijkstra’s 

algorithm. 

  

 

5. SOFTWARE REQUIREMENTS 

5.1 Unity 3D  
Unity 3D is a game engine used for developing games for multiplatform use. It is one of the best features of Unity to 

allow user to create a game able to run on multiple devices or systems. The coding is mostly in C# and the inbuilt 

assets are easier to access. Unity can handle and support several art assets and file formats from Maya, Blender, 

Adobe Photoshop and Illustrator. All these assets are handled by Unity’s GUI (Graphical User Interface). 

 

5.2 MonoDevelop 

The Unity game engine works in conjunction with MonoDevelop for controlling the behaviour of objects. 

MonoDevelop is an open source Integrated Development Environment or IDE developed by Xamarin and the Mono 

community which is primarily used for development in the C# programming language. The C# scripts enable 

developers to control the logic and behaviours of objects within the Unity environment. In this way, the combined 

tools of Unity and MonoDevelop enable developers to focus on the development of the AI components of the game 

rather than on issues related to 3D graphics rendering and physics calculations. 

 

5.3 Adobe Tools 

This set of software is used for designing game objects, environment and UI. 

 

 

6. IMPLEMENTATION 

6.1 Player controlled car module 

The player-controlled car module consists of four sub modules: (i) the Car Body, (ii) the WheelsHubs, (iii) Car 

Controller script , and (iv) Car User Control script. The body of the car is the 3D model that the player sees in the 



Vol-3 Issue-2 2017    IJARIIE-ISSN(O)-2395-4396    

 

4610 www.ijariie.com 3600 

game environment; this sub module also contains the colliders, which enable the car to collide with objects in the 

game environment. The wheels of the car contain wheel colliders, which enable the wheels to make contact with the 

road and drive the car forward. The wheels sub module also contains a script which animates the rotation of the 

wheels as the car moves. The HUD component of the car is controlled by the CarController.cs script, which handles 

displaying the current speed, position, and lap of the car to the player. 

 

6.2 Game controlled car module 

The game-controlled car (or the AI-controlled car) consists of four submodules: (i) the body, (ii) the wheelsHub, (iii) 

the trigger area, and (iv) the AI control script. The body and wheels of the game-controlled car are identical to the 

body and wheel components of the player-controlled car. The trigger area component of the car is controlled by the 

CarSensor.cs script and detects when a wall enters into the trigger area. When this happens, the AI controller script 

is informed so that it would slightly adjust its control of the car. The AI controller script, called AICarControl.cs. 

 

6.3 Environment module 

The environment module consists of two sub modules: (i) the racetrack and (ii) the waypoints system. The racetrack 

is the road within the game environment on which the cars races, and the waypoints system represents the key 

positions around the racetrack. The latter enables the game-controlled cars to navigate around the racetrack. 

 

6.4 Network lobby module 

The LobbyPlayer is created from the LobbyPlayerPrefab when a player joins the lobby. One LobbyPlayer for each 

player created when client connects, or player is added. Add user scripts to this prefab to hold game-specific player 

data. This prefab must have a NetworkLobbyPlayer component. 

 

 

6. RESULT 

Racer was tested by over twenty users, who all reported that they thoroughly enjoyed the game. It was observed that 

there was approximately equal number of players who were able to win the race against the game-controlled cars. 

This suggests that not only did the game provide an entertaining gaming experience, it also provided a reasonably 

engaging and challenging game play. 

 

In general, it can be concluded that the Unity platform supported efficient development of the race car game. The 

Unity platform supports implementing the race car’s search for a path on the racetrack with its components of the 

waypoint system, the physics engine, and vector calculation functions, all of which are not available if the 

implementation was done using traditional AI search techniques. With these Unity components, the developer was 

able to implement the race car’s search for a path on the track with less effort and more efficiently, and the 

developed race car can successfully mimic human driving behavior. 

 

Future work would involve incorporating other path finding techniques into the existing game system so that it can 

be more exciting. The waypoint system can be used to support a different implementation of the search for the race 

car’s path such that it is more dynamically determined based on its current position. This would make it more 

difficult for the human players to predict the behavior of the game-controlled cars. This unpredictable behavior 

would mean a more challenging gameplay for the user. Furthermore, while this game was designed for 

entertainment, the software can be extended to become a driver simulator for educational purposes. By modifying 

some of the parameter values of the car, such as the braking coefficients and torque values, and by modifying the 

game environment to resemble that of a municipal road system, Racer can be adapted to become a simulation 

software for learner-level drivers or for familiarizing drivers with the roadway layouts and traffic laws of foreign or 

unknown cities. 

 

7. CONCLUSION 

Development of the game system was made easier because of the implementation tools. The Unity game engine 

supports effective development of the game system of racer with its high-level abstraction programming tools and 

intuitive user interface. These features support developers in implementation of AI concepts so that they can focus 

on the game logic and ignore lower level development details such as graphics rendering and physics calculations. 

The combined tools of MonoDevelop and Unity support the implementation processes because MonoDevelop 

https://docs.unity3d.com/ScriptReference/Networking.NetworkLobbyPlayer.html


Vol-3 Issue-2 2017    IJARIIE-ISSN(O)-2395-4396    

 

4610 www.ijariie.com 3601 

consists of auto correction features for many libraries and SDKs used in Unity. In the Unity platform enables the car 

racing system of the game to be more efficiently developed. If the Unity platform was not used, the racetrack would 

be mapped to a set of coordinates or nodes, which represent the 3D search space that covers the track. Then the path 

that the race car follows on the racetrack can be determined using either a blind or heuristic search algorithm, which 

identifies the nodes to be included in the path in the 3D space of the racetrack. The Unity engine has built-in high-

level abstractions for trigger detection, which also reduced implementation efforts. Also Unity has drag-drop to keep 

simple to work. 

 

Thus it will easier for us to develop car road fighter using unity which gives effective results as point of view by 

user. The game environment and effects would be entertaining and statically defined for player.  

 

8. REFERENCES  
 
[1]  Ryan Henson Creighton. ―Unity 3D Game Development by Example Beginner's Guide‖, p.42-45, 2010. 

[2] ―Unity Game Development Essentials‖, by Will Goldstone. 

 

[3] James Sugrue. IOS 5 game development, August 2012. 

 

[4] Cheng Ming-zhi. Unity game development technology, p.75-79, June 2012. 

 

[5] Xuan Yu-Song. Unity3D game development, p.101-103, June 2012. 

 

[6] Shi Xiao-ming,Michelle Menard. Unity game development practice, p.10-13, April 2012. 

 

[7] Zhao Ke-xin. Several optimization Suggestions of using Unity to rapidly develop high  quality games, 

p.5-8, 2011. 

 

[8]  SU Zhi-tong,SHI Shao-kun, LI Jin-hong. Computer Engineering and Design, v31, n 7,  p.1631-1634, 

2010. 

 

[9] Peng G,He Y, Sun Y, etal. Three-Dimensional Game Modeling and Design Research Based  on 3Dmax 

Software ET Intelligent Transport Systems, Advances in Computer Science,  Environment, Ecoinformatics, and 

Education, 2011. 

 

[10] J. M. Field, M. F. Hazinski and M. R. Sayre, ―Part 1: executive summary: 2010 American Heart Association 

Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care‖, Cir, (18 Suppl 3), vol. 122, 

(2010), pp. 640–656.  

  

[11] S. M. Dorman, Video and computer games: e_ect on children and implications for health education, Journal of 

School Health, vol. 67, no. 4, pp. 133138,1997.  

 

[12]  M. Prensky, Digital game-based learning, Computers in Entertainment, vol.1, no. 1, pp. 2124, 2003.  

 

[13]  B. A. Foss and T. I. Eikaas, Game play in engineering education concept and experimental results, International 

Journal of Engineering Education, vol. 22, no. 5, pp. 10431052, 2006.  

 


