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ABSTRACT 
 

In this paper we calculate electronic band structure and phonon dispersion of Zig-Zag CNTs. After that we calculate 

total scattering rate of electron phonon scattering in various CNTs and finally we begin to simulate carrier transport 

in a Zig-Zag CNT which be used as a channel of FET. We introduce Umklapp Process for Zig-Zag and Armchair 

CNTs to reduce calculation’s.  
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1  Introduction 
 

Indubitably CNTs (Carbon Nano Tubes) will be a good candidate for product new material with new property 

because of their unique physical and chemical properties. The measured specific tensile strength of a single layer of a 

multi-walled carbon nanotube can be as high as 100 times that of steel, and the graphene sheet(in-plane) is as stiff as 

diamond at low strain. These mechanical properties motivate further study of possible applications for lightweight and 

high strength materials[1]. As we show, one dimensional electronic band structure of CNT’s make them as an 

attractive material for electronic device designs. Many of scientist believe that CNTs can take the Si role in the future 

of electronic device[2, 3]. The rapid growth of shrinking of transistor make many problem on designing of future race 

of transistors. As we know a MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor) is made of 5 basic 

component. 1-Gate, 2-Source, 3-Drain, 4-Gate Oxide, 5-Channel[4]. When a transistor is shrunk all of it’s component 

must be shrunk. When gate oxide be more slim the current tunneling to Gate increase exponentially. Some scientist 

show Silicon Nitride was a good material instead of silicon oxide because of it’s high dielectric constant and it’s 

amorphous structure [5, 6, 7]. Another problem is the length of channel. Making a channel of Si in nano scale is very 

difficult, because it is very difficult to control the impurity density in nano scale designing. One of solution for this 

problem is using of CNT’s as a channel of FET (Field Effect Transistor) Fig. 1 show a CNTFET structure. We can 

product pure CNT’s in room condition, therefore this material attract many of scientist mind to design future race of 

CNT’s. In this article we study electronic properties of CNT’s and simulate carrier transport in Zig-Zag CNT’s as a 

channel of FET.  
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Figure  1:  This Figure illustrate a CNTFET structure.  

   
 

2  SWCNTs Structure 
 As a theoretical viewpoint SWCNTs(Single Wall Carbon Nano Tubes) can be assumed as a graphene sheet 

which was rolled into a cylinder[8, 9]. Graphene is also the name commonly associated with a single layer of graphite 

in two dimensions. The graphene sheet lattice structure is not a Bravais lattice by itself, but can be regarded as an 

underlying square Bravais lattice with a two - atom basis (called ’a’ and ’b’) . Graphene is a two dimensional sheet 

consisting of connected carbon atoms in hexagons like the benzene molecule[10] . The basis of a graphene sheet 

consists of two atoms named ’a’ and ’b’, see Fig. 2. When considering only nearest neighbor interaction between e.g. 

the ’a’ atom is connected with three ’b’ atoms, the angle between each ’b’ atom is equally spaced with 120∘ and band 

length between any carbon-carbon is equal 1.42Å [11]. Because of definition of CNTs their electronic structure can 

be obtained from those one of graphene sheet. This assumption named Zone-Folding approximation[1]. 

Graphene sheet consist of 2 atom basis named ’a’ and ’b’ we can define a Bravais lattice with any ’a’ atoms with each 

other. This lattice define with two basis vector �⃗�1 and �⃗�2.  

 

 �⃗�1 = 𝑎 (
√3

2
,

1

2
) (1) 

   

 �⃗�2 = 𝑎 (
√3

2
, −

1

2
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Figure  2:  Graphene structure. this figure show 2 kind of carbon shape in graphene sheet. As you see an ’a’ atom 

has 3 ’b’ atom in its first neighbor and has 6 ’a’ atom in it’s second neighbor and has 3 ’b’ atom in it’s third neighbor 

and finally has 6 ’b’ atom in its 4’th neighbors. 

  
 Where a is lattice constant of graphene and is equal to 2.46Å[10]. Reciprocal vector of graphene sheet can be 

obtained with those basis vector of direct lattice[12].   

 �⃗⃗�1 = 2𝜋
�⃗⃗�2×�⃗⃗�3

�⃗⃗�1⋅(�⃗⃗�2×�⃗⃗�3)
 (3) 

   

 �⃗⃗�2 = 2𝜋
�⃗⃗�3×�⃗⃗�1

�⃗⃗�1⋅(�⃗⃗�2×�⃗⃗�3)
 (4) 

 Where �⃗�3 is a unit vector perpendicular to the graphene sheet, therefore if we assume geraphene sheet in X-Y plane 

then �⃗�3 = �̂� 

 

As mention before we can obtained CNT’s by rolling graphene sheet into a cylinder. For explain this rolling 

mathematically you can imagine a cylinder and expand it into a plane. By this work we have a rectangle that it’s length 

is equal to the cylinder circumference and it’s width is equal to the cylinder length. So for obtain a CNT from a 

graphene sheet we must cut a rectangle which it’s length be equal to CNT circumference and it’s width be equal to 

CNT height. As you see in Fig. 3 you can find that we can obtain 3 typed CNTs by choosing the form of selection of 

this rectangle. We want to explain this selection mathematically. The length of this rectangle is called 𝐶ℎ and it’s 

name is ’Chiral Vector’ [13]. If the angle between 𝐶ℎ and X-axis be equal to zero then the CNT which obtain is called 

Armchair and if this angle was equal to 30∘ the CNT is called Zig-Zag[1].  
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Figure  3:  This Figure illustrate a CNT unit cell. In this figure you can realize Zig-Zag vector (8,0) and also 

armchair vector (8,8) and a chiral vector(8,4) is drown. The rectangle which is made by �⃗⃗� and �⃗⃗�ℎ is the unit cell of 

CNT (8,4).  
 

 
Figure  4:  This figure shows 3 kind of CNT’s. 

 
By selecting any of angles between [0..30] the CNT is named Chiral. Chiral vector can be expanded by graphene basis 

vector ’�⃗�1’ and ’�⃗�2’.   

 𝐶ℎ = 𝑛�⃗�1 + 𝑚�⃗�2 (5) 

 By this definition we can name any CNT associated with its chiral vector by two integer number (n,m). Fig. 4 show 3 

kind of CNTs. As mention before the magnitude of chiral vector is equal to circumference of CNT so we can write the 

radius of CNT as below   

 𝑟 =
𝑎√𝑛2+𝑚2+𝑛𝑚

2𝜋
 (6) 

Unit cell of CNTs define by a rectangle with a length equal to chiral vector and a width equal to translation vector. 

Translation vector is an smallest vector toward CNT axis which transmit any points to a new points that have same 

geometrical properties. This vector can be obtained from its definition simply. We can expand translation vector by 

graphene basis vector ’�⃗�1’ and ’�⃗�2’.   

 �⃗⃗� = 𝑡1�⃗�1 + 𝑡2�⃗�2 (7) 
 Whereas CNT axis is perpendicular to chiral vector( Chiral vector is perpendicular to the CNT axis) then we can 
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write   

 𝐶ℎ ⋅ �⃗⃗� = 0 (8) 

 Therefore we can carry out 𝑡1 and 𝑡2 by noting the definition of the translation vector (must be the smallest vector) 

and by using Eq. 5, 7, 8. 

  

 𝑡1 =
𝑛+2𝑚

𝐺𝐶𝐷(𝑛+2𝑚,𝑚+2𝑛)
 (9) 

   

 𝑡2 = −
2𝑛+𝑚

𝐺𝐶𝐷(𝑛+2𝑚,𝑚+2𝑛)
 (10) 

 Where GCD(a,b) return the Great Common Divisor of integer numbers a and b. As we know from traditional solid 

state physics[12], the unit cell of graphene, which is made by two basis vector �⃗�1  and �⃗�2 , is defined by a 

parallelogram which is made by �⃗�1 and �⃗�2 and the unit sell of CNT is defined by a rectangle was made by 𝐶ℎ and �⃗⃗�, 

therefore the number of hexagonal in the unit cell of CNT is then obtained by   

 𝑁 =
|𝐶ℎ×�⃗⃗�|

|�⃗⃗�1×�⃗⃗�2|
=

2(𝑛2+𝑚2+𝑛𝑚)

𝐺𝐶𝐷(𝑛+2𝑚,𝑚+2𝑛)
 (11) 

This number is equal to 2n for both Armchair(n,n) and Zig-Zag(n,0) CNTs. 

 

 

 

3  Electronic Structure of CNT 

 
Electronic band structure of CNTs is provided from those graphene one (Zone Folding). Electronic band structure of 

Graphene can be calculated by tight binding theory[14]. Before explain this method for CNTs we first obtain electron 

wave vector in CNTs.  

 

3.1  Electron Wave Vector of CNT 

 

We now define two wave vector �⃗⃗⃗�⊥ and �⃗⃗⃗�||, where �⃗⃗⃗�⊥ is a vector which is parallel to 𝐶ℎ and �⃗⃗⃗�|| is a vector that is 

parallel to the CNT axis and satisfied below condition.   

 �⃗⃗⃗�⊥ ⋅ 𝐶ℎ = 2𝜋,      �⃗⃗� ⋅ �⃗⃗⃗�⊥ = 0 (12) 

   

 �⃗⃗⃗�|| ⋅ 𝐶ℎ = 0,        �⃗⃗� ⋅ �⃗⃗⃗�|| = 2𝜋 (13) 

There are a simple relation between basis vector from direct lattice and those one of reciprocal lattice[12].   

 �⃗�𝑖 ⋅ �⃗⃗�𝑗 = 2𝜋𝛿𝑖𝑗 (14) 

 From (9), (10), (11), (12), (13) and (14) we can drive �⃗⃗⃗�|| and �⃗⃗⃗� ⊥ as below.   

 �⃗⃗⃗�⊥ =
1

𝑁
(−𝑡2�⃗⃗�1 + 𝑡1�⃗⃗�2),      �⃗⃗⃗�|| =

1

𝑁
(𝑚�⃗⃗�1 − 𝑛�⃗⃗�2) (15) 

When Graphene sheet is rolled to make a CNT, �⃗⃗⃗�⊥ is rolled too. So by using periodic boundary conditions in the 

circumference direction denoted by the chiral vector 𝐶ℎ, the wave vector associated with the 𝐶ℎ direction becomes 

quantized, while the wave vector associated with the direction of the translational vector �⃗⃗� (or along the nanotube 

axis) remains continuous for a nanotube of infinite length. Since 𝑁�⃗⃗⃗�⊥ corresponds to a reciprocal lattice vector , two 

wave vectors which differ by 𝑁�⃗⃗⃗�⊥ are equivalent. But 𝑡1 and 𝑡2 do not have a common divisor except for unity (as 

mention before) so there are N discreet value for a wave vector associated with the 𝐶ℎ direction. Therefore we can 

write CNT’s wave vector as a continuum component along tube axis and a discrete value of �⃗⃗⃗�⊥.   

 �⃗⃗⃗�𝜈
𝐶𝑁𝑇 = (𝑘

�⃗⃗⃗�||

|�⃗⃗⃗�|||
+ 𝜈�⃗⃗⃗�⊥) ,      𝜈 = 0. . . 𝑁 − 1,      𝑘 = −

𝜋

|�⃗⃗�|
. . .

𝜋

|�⃗⃗�|
 (16) 

We find from this formula that wave vector of a CNT with a given value for 𝜈 is a line in direct of �⃗⃗⃗�||. k varies 

between −
𝜋

|�⃗⃗�|
 to 

𝜋

|�⃗⃗�|
 because any one dimensional lattice with a translation vector �⃗⃗� has a BZ (Brillouin Zone) from 

that mentioned range[12, 14].  
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3.2  Graphene band Structure 

We obtain graphene band structure by tight binding theory. Any carbon atom is banded to it’s three nearest neighbors 

via 𝑠𝑝2 trigonal very strong single 𝜎 bands[15]. The fourth valence (2p) electrons form out-of-plane delocalises 𝜋 

bands, perpendicular to the planes containing the 𝜎 bands. While there are strong banded between 𝜎 band there not 

have many role in conduction in graphene. So the main role of conduction is remain for 𝜋 banding electron[14]. Tight 

binding model with Bloch wave functions explain a beautiful view of graphene band structure [16]. As we know from 

traditional solid state, to obtain band structure of a crystal with tight binding model we must solve below equation[16].   

 

 ∑  𝑖 𝑐𝑖⟨𝜑𝑗(𝑟)|�̂�|𝜑𝑖(𝑟)⟩ = 𝐸 ∑  𝑖 𝑐𝑖⟨𝜑𝑗(𝑟)|𝜑𝑖(𝑟)⟩ (17) 

 

 Where summation is taken over first neighbors and 𝜑 is Bloch wave functions and �̂� is thigh binding hamiltonian. 

By sandwiching hamiltonian between two orbital we can obtain banding energy between those orbital. By looking the 

graphene sheet we find that any ’a’ atom is connected with 3 ’b’ atoms and doesn’t have any bonded with ’a’ atoms. 

Therefore the main diagonal element of hamiltonian matrix be equal to zero. The bonding energy of two 𝜋 orbital is 

equal to 𝛽 = −3.03𝑒𝑉[17, 18]. There are two view point for the overlap integral of two different 𝜋 orbital. One set it 

to zero (Slater-Koster scheme). But we don’t use this value. In fact the correct value for overlap integral of two 

different 𝜋 orbital of carbon in graphene is equal to 𝑠 = 0.129[17, 18]. We can precis the tight binding formula in an 

algebraic formula as below   

 �̂� ⋅ 𝐶 − 𝐸�̂� ⋅ 𝐶 = 0 (18) 

 

 This has answer when   

 𝑑𝑒𝑡(𝐻 − 𝐸𝑆) = 0 (19) 

 

 Bloch wave function is defined as below[16].   

 𝜑(𝑟 + 𝑝�⃗⃗�) = 𝑒𝑖𝑝�⃗⃗⃗�⋅𝑟𝜑(𝑟) (20) 

 

 

 By noting to geometry of graphene sheet, we find that we must consider three nearest-neighbor ’b’ atoms relative to 

an ’a’ atom to extract off diagonal hamiltonian matrix elements. Position of any ’b’ atoms is well defined so we can 

obtain hamiltonian matrix element as below.   

 �̂� = (
0 𝛽𝑓(�⃗⃗⃗�)

𝛽𝑓⋆(�⃗⃗⃗�) 0 ) (21) 

   

 �̂� = (
1 𝑠𝑓(�⃗⃗⃗�)

𝑠𝑓⋆(�⃗⃗⃗�) 1 ) (22) 

 

 where 𝑓(�⃗⃗⃗�) is a function of wave vector �⃗⃗⃗� and is equal to   

 𝑓(�⃗⃗⃗�) = √1 + 4𝑐𝑜𝑠 (
√3𝐾𝑥𝑎

2
) 𝑐𝑜𝑠 (

𝐾𝑦𝑎

2
) + 4𝑐𝑜𝑠2 (

𝐾𝑦𝑎

2
) (23) 

 

 By solving Eq. 19 we can obtain graphene band structure.   

 𝐸 =
±𝛽|𝑓(�⃗⃗⃗�)|

1±𝑠|𝑓(�⃗⃗⃗�)|
 (24) 

 

 Where ’+’ refer to 𝜋 bonding and ’-’ refer to 𝜋⋆ bonding and 𝑎 is lattice constant of graphene. Fig. 5 show the 

graphene band structure. As you see in this figure graphene has 2 band level. One with negative energy denote valance 

band other with positive energy denote conduction band. As you see in this figure valence band is touch conduction 

band in 6 points. Graphene is a quasi metal because it has 2d band structure (is dependent only with 𝐾𝑥 and 𝐾𝑦) but 

it’s valence band and conduction band touch each other only in some points. 
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Figure  5:  Graphene band structure. As you see the conduction band touch valence band in 6 points.  

   
3.3  CNT band Structure 

According to the definition of SWCNT, the energy bands of a SWCNT consist of a set of one-dimensional energy 

dispersion relations which are cross sections of those of graphene. By using Eq. 16 and put it in Eq. 24 we can drive 

SWCNT band structure. Fig. 6 show some band structure of CNT’s. 

 

 

 
 

Figure  6:  Electronic band structure of some CNTs based on Tight-binding model. The banding energy of 𝜋 

orbital is equal to -3.03 eV and its overlap matrix is equal to 0.129. This figure clearly show that CNT (15,0) is a 

metallic CNT. We will drive an important relation between the geometry of CNT and it’s conduction. There are an 

important note. There are 
𝑁

2
+ 1 degenerate levels in Zig-Zag CNT(n,0) . Therefore CNT(10,0) 11 realizable energy 

level. This is happened for armchair CNTs too  
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Figure  7:  This Figure illustrate first Brillouin Zone of graphene . 

   
Now we extract an important relation between geometric parameter of CNT’s and it’s electronic conduction. As we 

see in Fig. 5 band levels of graphene is touch each other in 6 points. This points is one of 3 high symmetry points in 

graphene first BZ. First BZ of graphene is shown in Fig. 7 and 3 high symmetry points is labeled as Γ and 𝐾 and 𝑀. 

band levels of graphene meet each other at 6 𝐾 points. The symmetry of band levels of graphene due to first BZ, make 

this 6 points to have a similar treatment. So considering any property of one of this 6 points is equivalent to each 5 

other. The position of one of K points in the first BZ of graphene is equal to (
2𝜋

√3𝑎
,

2𝜋

3𝑎
) [14]. So if any of the band level 

of CNT transits from this point the CNT treat as a conductor. But if there are not any transits from this point CNT treat 

as a semiconductor. As we see in Fig.8 the band gap of CNT’s in semiconducting shape is start from near 1 for 

SWCNT’s with little radius (10,0) and decrease by increasing on the radius. Therefore CNT’s which it’s radius is 

larger than CNT(10,0) is treat as semiconductor. 

 

 
Figure  8:  This Figure show band gap of semiconducting Zig - Zag (n,0) CNTs. As you see the band gap decay by 

increment on CNT radios. 
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We can write   

 �⃗⃗⃗�𝜈
𝐶𝑁𝑇 ⋅ 𝐶ℎ = 2𝜋𝜈 (25) 

 

 and chiral vector is define as below   

 𝐶ℎ = (
(𝑛+𝑚)√3

2
,

𝑛−𝑚

2
) (26) 

 

 

 Since the wave vector of CNT with a given value for 𝜈 is a line so if one band level of CNT want to cut Point K then 

the coordinate of this point must satisfied Eq. 25. By putting (
2𝜋

√3𝑎
,

2𝜋

3𝑎
) instead 𝐾𝜈

𝐶𝑁𝑇 and put Eq. 26 in Eq. 25 we 

obtain an important condition for conducting CNT’s   

 

 
2𝑛+𝑚

3
= 𝜈 (27) 

 

 This relation said to us, if (2n+m) or in the other word if (n-m) be a multiple of 3 then the CNT is a conductor.   

Density of State of a one dimensional lattice with a lattice vector �⃗⃗� and for one level is given by [16]   

 

 𝑔𝑖(𝜀) =
|�⃗⃗�|

𝜋

1

|
𝜕𝐸𝑖
𝜕𝑘

|
𝐸𝑖=𝜀

 (28) 

 

   

 𝐷𝑂𝑆(𝜀) = ∑  𝑖 𝑔𝑖(𝜀) (29) 

 

 Fig. 9 Show DOS of some CNT’s. As we see in this figure semiconducting Zig-Zag CNT’s have not any density of 

state at the Fermi level but armchair CNT’s have a little density of state at Fermi level. If we focused to the armchair 

CNTs in around fermi level we find that the DOS has not treat as a constant value and treat as a parabola curvature 

(Some workers show that Armchair CNTs have a constant DOS around Fermi level[19] , but it isn’t. This is important 

in some case that the differential of DOS is appeared). 
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Figure  9:  This figure compares density of state of a Zig-Zag CNT via as an armchair CNT. As you see the Zig-Zag 

CNT has not any DOS near the fermi level. 
   

 
4  Phonon dispersion Of CNT 
The phonon dispersion relations of SWCNTs can be calculated using zone folding [20], tight-binding methods[21, 22, 

23, 24], density functional theory [25, 26], and symmetry-adapted models [27, 28]. The phonon dispersion relations of 

SWCNTs can be understood by zone folding of the phonon dispersion branches of graphene. In this work we have 

calculated phonon dispersion of a graphen sheet by force constant model. In this model we have applied the effect of 4 

nearest neighbors. Since there are two carbon atoms, in the unit cell of graphene, one must consider 6 coordinates. The 

secular equation to be solved is thus a dynamical matrix of rank 6, such that 6 phonon branches are achieved. In order 

to determine phonon dispersion relation we consider the sum of the forces on the 𝑖𝑡ℎ atom, �⃗�𝑖 , for N atoms in the 

unit cell as follow (there are 2 atoms in the unit cell of graphene). 

  

 �⃗�𝑖 = ∑  𝑗 𝐾𝑖𝑗(�⃗⃗�𝑗(�⃗⃗�𝑗) − �⃗⃗�𝑖(�⃗⃗�𝑖)) (30) 

 Where �⃗⃗�𝑖 is the displacement of the 𝑖𝑡ℎ atom and 𝐾𝑖𝑗 is a 3 × 3 force constant matrix between the 𝑖𝑡ℎ and the 𝑗𝑡ℎ 

atom. �⃗⃗�𝑖 denotes the original position of the 𝑖𝑡ℎ atom. The sum over j in Eq. 30 is normally taken over only a few 

neighbor distances relative to the 𝑖𝑡ℎ  site, which for a 2D graphene sheet has been carried out up to 4th 

nearest-neighbor interactions [21]. The equation of motion is given by below equation 
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 𝑀�̈⃗⃗�𝑖 = �⃗�𝑖 (31) 

 

Where M is the mass of the carbon and is equal to 2 × 10−26𝑘𝑔. In a periodic system we can perform a Fourier 

transform of the displacement of the 𝑖𝑡ℎ atom to obtain the normal mode displacements 𝑢𝑖. Before note that we label 

Phonon wave vector with �⃗⃗�  to realize that form electron one in our calculations. When we assume the same 

eigenfrequencies 𝜔 for all �⃗⃗�𝑖 , (only for low temperature this assumption is correct we do some calculation for 

nonlinear term in Phonon dispersion in [29]), then from fourier translation we can write below expression for �⃗⃗�𝑖(�⃗⃗�)   

 �⃗⃗�𝑖(�⃗⃗�) =
1

√𝐶
∑  �⃗⃗�′ 𝑒−𝑖(�⃗⃗�′.�⃗⃗�𝑖−𝜔𝑡)�⃗⃗�

�⃗⃗�′
𝑖  (32) 

 By taking differential form this equation twice and put it in Eq. 31 we obtain below equation for motion   

 (∑  𝑗 𝐾𝑖𝑗 − 𝜔2𝑀𝑖𝐼)
1

√𝐶
∑  �⃗⃗� 𝑒−𝑖(�⃗⃗�⋅�⃗⃗�𝑖−𝜔𝑡)�⃗⃗�𝑖(�⃗⃗�) = ∑  𝑗 𝐾𝑖𝑗 1

√𝐶
∑  �⃗⃗� 𝑒−𝑖(�⃗⃗�⋅�⃗⃗�𝑗−𝜔𝑡)�⃗⃗�𝑗(�⃗⃗�) (33) 

 With multiply two side of this equation by 𝑒𝑖𝑄′⃗⃗⃗⃗⃗⋅�⃗⃗�𝑖  and summation over all �⃗⃗�𝑖 and nothing that  

 ∑  �⃗⃗�𝑖
𝑒𝑖(�⃗⃗�−𝑄′⃗⃗⃗⃗⃗)⋅�⃗⃗�𝑖 = 𝛿�⃗⃗�𝑄′⃗⃗⃗⃗⃗ 

Eq. 33 take simple form as below 

  

 (∑  𝑗 𝐾𝑖𝑗 − 𝜔2𝑀𝑖𝐼)�⃗⃗�𝑖(�⃗⃗�) − ∑  𝑗 𝐾𝑖𝑗𝑒𝑖�⃗⃗�Δ⃗⃗⃗𝑅𝑖𝑗 �⃗⃗�𝑗(�⃗⃗�) = 0 (34) 

 Where Δ�⃗⃗�𝑖𝑗 = �⃗⃗�𝑖 − �⃗⃗�𝑗. Eq. 34 can be written as a secular matrix shape as below   

 𝐷(�⃗⃗�)𝑢(�⃗⃗�) = 0 (35) 

 Where dynamical matrix D is a 3𝑁 × 3𝑁 (for graphene 6 × 6) matrix. It is convenient to divide the dynamical 

matrix 𝐷(�⃗⃗�) into small 3 × 3 matrices 𝐷𝑖𝑗  as below . 

  

 𝐷 = (
𝐷𝑎𝑎 𝐷𝑎𝑏

𝐷𝑏𝑎 𝐷𝑏𝑏) (36) 

 Where 𝐷𝑖𝑗  is defined respect to equation of motion and Fourier transform as below   

 𝐷𝑖𝑗(�⃗⃗�) = ∑  𝑗† (𝐾𝑖𝑗† − 𝑀𝜔2)𝛿𝑖𝑗 − ∑  𝑗′ 𝐾𝑖𝑗′𝑒𝑖�⃗⃗�⋅Δ�⃗⃗�𝑖𝑗′ (37) 

 Where summation over 𝑗′ is taken over the 4th near neighbors and summation over 𝑗† is taken over the neighbors of 

4th atom respect to i’th atom which be equal to the 𝑗′ type atom. So we can obtain any element of this matrix as 

below(see Fig. 2) 

  

 𝐷𝑎𝑎 = 𝐾𝑎𝑏1+. . . +𝐾𝑎𝑏12 + 𝐾𝑎𝑎1+. . . +𝐾𝑎𝑎6 − 𝐾𝑎𝑎1𝑒𝑖�⃗⃗�⋅Δ�⃗⃗�𝑎𝑎1 −. . . −𝐾𝑎𝑎1𝑒𝑖�⃗⃗�⋅Δ�⃗⃗�𝑎𝑎6  (38) 

   

 𝐷𝑎𝑏 = −𝐾𝑎𝑏1𝑒𝑖�⃗⃗�⋅Δ�⃗⃗�𝑎𝑏1 −. . . −𝐾𝑎𝑏12𝑒𝑖�⃗⃗�⋅Δ�⃗⃗�𝑎𝑏12  (39) 

 To obtain the eigenvalues for D and non-trivial eigenvectors 𝑢𝑄 ≠ 0, we solve the secular equation 𝑑𝑒𝑡𝐷(�⃗⃗�) = 0 

for a given �⃗⃗�  vector. Force constant matrix 𝐾𝑖𝑗  was explained respect to 4𝑡ℎ  nearest neighbors in deferent 

references [21, 30, 31]. You can obtain this element theoretically by using well known carbon-carbon potential like as 

Tersof-Berner, Morse potential and harmonic potential[32, 33, 34] and applying a little displacement to any carbon 

atom to drive forces. When forces is obtained you can drive Force Constant Matrix element. We use this method not 

for obtaining matrix element but for obtain nonlinear effect of vibration[29]. The work which obtain this elements is a 

beautiful work to compare experimental results with those theory one. We solve 𝑑𝑒𝑡𝐷(�⃗⃗�) = 0 and drive phonon 

dispersion for graphene. Fig. 8 shows phonon dispersion of geraphen. Because the unit cell of graphene is equal to two 

atoms and any atoms have 3 freedom of degrees so we expect, we obtain 6 branches of phonon for graphene. 3 of them 

be acoustic phonon which its energy is increase by an increment to the magnitude of wave vector of phonon and 3 

optical phonon which it’s energy is decrease by an increment to the magnitude of wave vector. By solving 6 × 6 

secular determinant of dynamical matrix we obtain 6 branches of phonon dispersion as be illustrated in Fig. 10.  
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Figure  10:  Phonon dispersion of graphene along high symmetry points. 

   
The phonon dispersion relations for a SWCNT can be determined by folding that of a graphene layer as we done 

before for band structure of SWCNT . The corresponding one-dimensional phonon energy dispersion relation for the 

CNT is given by   

 

 ℏ𝜔𝜈
𝐶𝑁𝑇(𝑞) = ℏ𝜔𝐺𝑟𝑎𝑝ℎ(𝑞

�⃗⃗�⊥

|�⃗⃗�⊥|
+ 𝜇�⃗⃗�||) (40) 

 

 Since there are 6 branches of phonon dispersion and each branches take N value for 𝜇 = 0. . . 𝑁 − 1 so there are 6N 

branches for phonon dispersion relation. For example in the CNT(10,0) we obtain N=20 and so there must be 120 

phonon dispersion relation but as mention before (Fig. 6) Zig-Zag CNTs and Armchair CNTs band structure have 
𝑁

2
+ 1 degenerate level so we have only 11 distinguishable level for CNT(10,0) and so there are 66 distinguishable 

level for Phonon branches of this CNT (Fig. 11) 
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Figure  11:  Phonon dispersion of CNT(10,0) and CNT(10,10).  
   

 
5  Electron-Phonon Scattering in CNT’s 
 While the effects of scatters such as lattice defects can be potentially reduced in synthesis, phonon scattering is 

intrinsic to the nanotube and determines the performance limits of the device. Now we want show the application of 

the last section in an application work. As mention before the idea where use a SWCNT instead of Si channel in a FET 

is formed in the recent years. We now simulate carrier transport in a CNTFET by using Monte Carlo method for 

selecting scattering mechanism and taking an average to the carrier velocity by obtaining their distribution function on 

a presence of electric field and scattering mechanism. As we know from traditional solid state[16, 35, 36] the initial 

distribution function was deformed in an existence of fields and scattering phenomena. Because carrier in CNTFET 

can be boat electron (by applying a positive voltage to gate) or the hole one (by applying a negative voltage to gate) 

[15] the initial distribution function that describe them is Fermi-Dirac distribution function. Imagine a Zig-Zag CNT 

which is a semiconductor . If we use it as a channel of FET and apply a potential to the gate then some charges was 

sprayed to the CNT. This charges treat as impurities role in natural semiconductors and change fermi level toward 

conduction band (electron transportion) or toward valence band(hole transportion). The charge is sprayed because the 

gate and the gate-oxide and CNT make a capacitor with a capacitance of[37, 38].   

 𝐶 =
2𝜋𝜅𝜀0𝐿

𝑙𝑛(
2(𝑡+𝑟)

𝑟
)
 (41) 

 Where r is tube’s radius and t is the thickness of the gate oxide and L is the CNT length. Using Fermi’s golden rule, 

the phonon mediated scattering rate from initial carrier state 𝑘 to final carrier state 𝑘′ is given by [39, 40] 
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 𝑊�⃗⃗�,�⃗⃗�′ =
𝐷2𝐷𝑂𝑆(𝑘′⃗⃗⃗⃗⃗)

𝜌𝑑𝜔𝑝
(𝑁𝑝 +

1

2
±

1

2
) (42) 

 Where 𝑁𝑝 is Bose - Einstein occupation number and 𝜌 is mass density of graphene sheet and D is deformation 

potential and be equal to   

 𝐷 = 𝐷0 (
2

𝑑

𝐸𝑝
2(𝑞=0)

𝐸𝑅𝐵𝑀
2 + 𝑞) (43) 

 where 𝐷0 = 14𝑒𝑉 and 𝐸𝑅𝐵𝑀 ≈
28𝑚𝑒𝑉

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑜𝑓𝐶𝑁𝑇
 and q is phonon wave vector and 𝐸𝑝  is phonon energy. For the 

determination of electron-phonon scattering rates electron band structure and phonon dispersion is divided into 2000 

grid points covering first BZ . The requirements of energy and momentum conservation lead to following selection 

rules for final electron state. 

  

 𝐸𝑓 = 𝐸𝑖 + 𝐸𝑝ℎ (44) 

   

 �⃗⃗�𝑓 = �⃗⃗�𝑖 ± �⃗� (45) 

 

where �⃗⃗� refer to electron and �⃗� refer to phonon wave vector. Based on final state of electron after scattering, two 

different processes are possible. They are Normal process and Umklapp process. A Normal process results in a final 

electron wave vector �⃗⃗�𝑓 that lies within the first BZ, while an Umklapp process results in a �⃗⃗�𝑓 that lies outside first 

BZ,a reciprocal lattice vector needs to be added to it to transmit it to the firs BZ. We can define a procedure respect to 

symmetry of Zig-Zag and Armchair CNTs, that give an equivalent point in the first BZ. In case of Zig-Zag or 

Armchair CNTs, any point out of First BZ can translate to first BZ by below translation formulism.   

  

𝑘′𝑓 =
2𝜋

𝑇
+ 𝑘𝑓 ,    𝜈′𝑓 = {

𝑛 − 𝜈𝑓    0 ≤ 𝜈𝑓 ≤ 𝑛

𝜈𝑓 − 𝑛    𝜈𝑓 > 𝑛
      𝑖𝑓  𝑘𝑓 < −

𝜋

𝑇

𝑘′𝑓 = −
2𝜋

𝑇
+ 𝑘𝑓 ,    𝜈′𝑓 = {

𝑛 − 𝜈𝑓     0 ≤ 𝜈𝑓 ≤ 𝑛

𝜈𝑓 − 𝑛                𝜈𝑓 > 𝑛
      𝑖𝑓  𝑘𝑓 >

𝜋

𝑇

𝑘′𝑓 = 𝑘𝑓 ,    𝜈′𝑓 = 2𝑛 −  𝜈𝑓   𝑖𝑓    𝜈𝑓 > 𝑛      𝑎𝑛𝑑        |𝑘𝑓| ≤
𝜋

𝑇
      

(46) 

  

Total scattering rate is define as summation over all final state, 𝑘′.   

 𝑊𝑇𝑜𝑡𝑎𝑙(�⃗⃗�) = ∑  𝑘′⃗⃗⃗⃗⃗ 𝑊�⃗⃗�,𝑘′⃗⃗⃗⃗⃗ (47) 

 and relaxation time, 𝜏(�⃗⃗�), is defile as below[41, 42].   

 𝜏(�⃗⃗�) =
1

𝑊𝑇𝑜𝑡𝑎𝑙(�⃗⃗�)
 (48) 

The distribution function of electron or hole can be varied by applied electric or magnetic fields and scattering 

phenomena. We have investigated carrier transport in single-walled semiconducting carbon nanotubes by solving the 

Boltzmann equation.  

 
𝜕𝑔𝑛(𝑟,�⃗⃗�,𝑡)

𝜕𝑡
+ �⃗�. ∇⃗⃗⃗𝑟𝑔𝑛(𝑟, �⃗⃗�, 𝑡) + �⃗�. ∇⃗⃗⃗𝑘𝑔𝑛(𝑟, �⃗⃗�, 𝑡) = 

  

 ∑  𝑘′ [𝑊�⃗⃗�,�⃗⃗�′𝑔𝑛(𝑟, �⃗⃗�, 𝑡)(1 − 𝑔𝑛(𝑟, 𝑘′⃗⃗⃗ ⃗, 𝑡)) − 𝑊�⃗⃗�′,�⃗⃗�𝑔𝑛(𝑟, 𝑘′⃗⃗⃗ ⃗, 𝑡)(1 − 𝑔𝑛(𝑟, �⃗⃗�, 𝑡))] (49) 

 

 It is now possible to simplify Eq. 49 by using relaxation time approximation[16].   

 
𝜕𝑔𝑛(𝑟,�⃗⃗�,𝑡)

𝜕𝑡
+ �⃗�. ∇⃗⃗⃗𝑟𝑔𝑛(𝑟, �⃗⃗�, 𝑡) + �⃗�. ∇⃗⃗⃗𝑘𝑔𝑛(𝑟, �⃗⃗�, 𝑡) = −

𝑔𝑛(𝑟,�⃗⃗�,𝑡)−𝑔𝑛
0 (𝑟,�⃗⃗�,𝑡)

𝜏
 (50) 

 

Where 𝑔𝑛
0  is initial distribution function of 𝑛𝑡ℎ  branch of energy dispersion of CNT which is independent on 

scattering phenomena and applied field. We have assume a Fermi - Dirac distribution function for unaffected electron. 

So if CNT Length be assumed very large we can neglect derivation due to position vector. 

  

 𝑔𝑛,𝑒𝑙
0 (𝑘, 𝑡) = 𝑓𝑛,𝑒𝑙

0 (𝑘) =
1

𝑒

𝐸𝑛(�⃗⃗⃗�)−𝜇
𝐾𝐵𝑇 +1

 (51) 

   

 𝑔𝑛,ℎ𝑜𝑙𝑒
0 (𝑘, 𝑡) = 1 − 𝑓𝑛,𝑒𝑙

0 (𝑘) (52) 
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Where 𝐸𝑛(�⃗⃗�) is electron energy and the wave function of electron is assumed as a Block function. The velocity of 

electrons can be obtained from semiclassical motion relation as below[16]. 

  

 𝑉𝑛(�⃗⃗�(𝑡)) =
1

ℏ
∇⃗⃗⃗𝑘𝐸𝑛(�⃗⃗�, 𝑡) (53) 

 Fermi level can be obtained from below relation. 

  

 𝑛 = ∫  𝑓(𝑘)𝑑𝑘 (54) 

 n is electron (hole) density. When we applied a voltage to gate some charges are sprayed to CNT and we can find 

electron density simply by dividing the number of this charges to CNT length. f(k) is those Fermi - Dirac function. We 

show Fermi level for a wide range of CNTs in Fig. 12. As you see in this picture the fermi level decay by increment on 

CNT radios. 

 

 
Figure  12:  This picture shows how fermi level decay by increment of n.  

   
The average of velocity is obtained as below.   

 �̅� = (∑  𝑖 𝑉𝑖𝑔𝑛(𝑘𝑖 , 𝑡𝑖)) × (∑  𝑖 𝑔𝑛(𝑘𝑖 , 𝑡𝑖))−1 (55) 

  

 𝑎𝑛𝑑    𝑡𝑖 = 𝑖𝑡𝑑 

As we know the carrier density is an integral over distribution function[35, 16]. So we can write   

 𝑛(𝑡) = ∑  𝜈 ∫  
 
𝜋
𝑇

−
𝜋

𝑇

𝑔𝜈(𝑘, 𝑡)𝑑𝑘 (56) 

 and   

 �̅� =
1

𝑡
∫  

𝑡

0
𝑛(𝑡′)𝑑𝑡′ (57) 

 In this simulation we let carrier scatter in a time around 10000 times of the maximum of relaxation time. When carrier 

drift for a drift time we calculate the total time of the carrier that has not any scattering before it. Now we generate a 

random number and compare it to the ratio of this time to drift time. If the random number is smaller than this ratio we 

must select a random scattering mechanism. We know that the current is made by charge moment. Therefore if we 

multiply the average charge density to the average velocity we cane drive the average current.   

 𝐼𝐷𝑆 = |�̅�𝑒�̅�| (58) 
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Figure  13:  Distribution function of CNT(10,0) for electron and hole. As you see wen we apply an electric field 

along tube axis the electron distribution be shifted to the left side while the hole one shifted to the right side. This 

causes electrons and holes take an acceleration from field in a common direction, because the velocity of conduction 

band in the left side is negative and it is negative for valence band in the right side too (see Eq. 52 and Fig. 6 )  
   

Fig.13 shows distribution function of electron in lowest conduction band versus the hole one in the maximum of 

valence band. By noting at Fig.6 we find that the direction (sign) of velocity for a given wave vector in maximum of 

valence band correspondent to it’s in minimum of conduction band, is opposite to each other. On the other hand 

distribution function of holes and electrons was shifted opposite to each other around k=0. So by applying an electric 

field along the tube axes the absolute current of carriers was happened towards against the field directions (this means 

the current of electrons and holes in an electric filed was happened in a same direction). We completely know that 

Fermi-Dirac distribution function change very sharp around fermi level. So it’s differential has a magnitude only 

around fermi level. Therefore scattering to the level that is far from fermi level has not any contribution in averaging 

for velocity. This means for CNTs with little radius which fermi level is only close or cut firs level band the other level 

has not any contribution in the velocity. But as we sea in Fig.8 by increasing in radius of CNT band gap was decreased. 

On the other hand the compactness of energy levels was increased. This means for CNT’s by larger radius fermi level 

can cut more than one band level and averaging for velocity contain the contribution of this level so there are 

complicated relation on the dependent of carrier velocity and the tube radius . Only the stimulation results can explain 

this dependent for us.  

 

5.1  Result Of Simulation 

 
The simulation results show that when the system spend a time more than 10−13𝑠 the distribution function take a 

uniform shape, this means by spending this time the system is transferred to an stationary condition, Fig.14 show the 

time dependent of electron velocity. As you see the velocity take a uniform value for a time bigger than 2 × 10−13𝑠. 

We have simulated a CNTFET with a gate oxide by 10nm thickness and a channel which made by a CNT(10,0) with a 

length of 100nm. The average velocity is shown in Fig.14. As you see for a defined region of voltage the velocity of 

electrons treat as a linear shape and take a uniform shape for a potential bigger than this voltage. One of the most 

important factor of FETs is the speed of switching between on-off states. So the the velocity - voltage curvature of a 
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CNTFET must have an acceptable slope, therefore the best range of potential of a CNTFET is those range that the 

velocity - voltage curvature has a linear shape. 

 
 

Figure  14:  This figure show that how an electron take accelerate in the field by passing time. The velocity take a 

maximum value and then tend to a constant value. As mention before this cause by the stable condition for distribution 

function after a time around 10−13𝑠 
   

Fig.15 show the major importance between electron transport and the hole one. As you see the hole transport make an 

small. In both (electron - hole) the velocity take a uniform shape per strong field. This means the CNTFET which is 

made by a CNT(10,0) can not work on high electric field if we expect of this transistor in switching device like CPU 

memory or computer memory. In this case the most factor which is important for us is the ability of anticlimax (on 

-off) of transistor. So the slope of velocity - field is more important factor for us in designing a CNTFET . Fig. 16 show 

that CNT (10,0) has an acceptable slope in its velocity - field curvature in the range of (0.5 - 3 MV/m). As you see in 

Fig.6 the velocity of valence band, which obtain from the gradient of energy respect to wave vector, is litter than 

concoction one. Therefore it is clearly that the average of hole velocity be smaller than electron. Fig.16 and Fig.17 

show another differences between electron transport and the hole one. As you see in this figures the electrons are 

scattered to total energy level but holes scattered only in the maximum level of valence band. Note that the initial state 

of holes is in the maximum level of valence band and they stay in this level forever. Other deference between hole 

scattering and electron scattering is the amount of scattering. Electrons scatters more than holes and take a wide range 

of wave vectors but the hole ones stay only in an small range of wave vector. Fig.18 show the average of electron 

density in the CNT(10,0). This figure show electron density decays with increment of the electric field along the tube 

axis. Fig.19 show the current of electron transport in a CNTFET by using a CNT(10,0) as it’s channel. 
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Figure  15:  his figure compare electron transport versus as hole one. As you see electrons take more velocity from 

filed, Consequently, the current which obtain from electron transport is more than hole one. 
   

 
Figure  16:  This figure compare electron scattering versus as hole one. This figure show that electrons scattered in 

many level of energy but the hole one stay only in the maximum of valence band forever. We carry out the scattering 

phenomena by Monte Carlo method. two picture that be ladled by ’a1’ and ’a2’ refer to electrons and those one which 

be labeled by ’b1’ and ’b2’ refer to hole one. This pictures selected from thousand case for instance to show how 

electrons scattered to many level but the hole one dos not.  
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Figure  17:  This figure shows how electron scattered more than hole one. Electrons take a wide range of wave 

vector in scattering mechanism too but the hole one dose not.  
   

 

 
Figure  18:  This figure show the electron density in the CNT(10,0) (see Eq. 56, 57) for varus Gate voltage. When 
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we assume fermi level must be a fixed level it cause that some of free carrier be constrained in presence of electric 

field. The amount of this charge increase by increment on applied electric field.  

 

   
 

Figure  19:  This figure show the electron current from Source to Drain in a CNTFET which use a CNT(10,0) as 

it’s channel. As you see the current has a maximum per the electric field which applied to its axis. When we increase 

the gate voltage the current which is transferred from Source to drain increase too. 
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