
Vol-5 Issue-4 2019 IJARIIE-ISSN(O)-2395-4396

24885 ijariie.com 1746

Chaos Engineering Framework

Amit Sengupta (Independent Research)

Email – amits2913@gmail.com

Independent Researcher

Abstract

Chaos engineering is the process of experimenting with a distributed computer system by introducing unexpected

disruptions in order to gauge the system's resiliency and to identify potential points of failure. Chaos engineering is

often confused as a way of testing your system. However, chaos engineering is not testing since tests are simply

statements about a system’s known properties. It makes assertions based on existing knowledge instead of verifying

properties of the current system. On the other hand, experimentation is all about exploring the unknown. It creates

new knowledge by proposing a hypothesis. If it’s proven, then the confidence grows and if it’s disproved, then we

learn something new. Chaos engineering is all about experimentation. No amount of testing can match the insights

gained through experimentation as experimentation can explore scenarios that cannot occur during testing.

Keywords: - Chaos Engineering, Chaos Experiments, Blameless Postmortem, Chaos Monkey, Simian Army,

Enterprise Resiliency, Fault Tolerance, Blast Radius, Controlled Chaos.

Introduction: -

Chaos Engineering as an engineering discipline highlights experimentation with production systems to build

confidence in its capability to respond and sustain in turbulent conditions. It helps to identify faults and gaps in the

systems. One of the basic principles of chaos engineering is to introduce hypothesis and experiments. The nature and

scale of the hypothesis are small while closer to the live systems in terms of functionalities. The primary objective of

chaos engineering is to generate new unknown information about a system and its behavior pattern while reacting to

a catastrophe.

Principles of Chaos Engineering: -

Unlike what the name may suggest, chaos engineering follows a systematic approach. The following principles

describe an ideal way to run experiments on your system.

1. Build a Hypothesis - The first principle of chaos engineering is to focus on the measurable output of a system

instead of its internal attributes. Measuring that output over a short period will show you the system’s steady

state. Some metrics that represent a system’s steady state include latency percentile, error rates, system

throughput, etc. Then you can hypothesize how that output will change when an incident is introduced. By

observing systemic patterns while experimenting, chaos engineering verifies how outputs are based on your

system health.

2. Introduce New Real-world Events - Chaos variables reflect real-world events, specifically hardware and

software failure, and non-failure events like a traffic spike. Each event is prioritized by its frequency or

potential impact. Any event that has the potential to disrupt the system’s steady state is a potential variable

in chaos experiments.

3. Run Experiments in Environments Matching Production - Systems, in general, behave differently

depending on the traffic patterns and environment. Due to its varying nature, the only way to capture the

request path in a reliable manner is by modeling your testing environment accurately by mirroring real traffic

conditions and usage.

mailto:amits2913@gmail.com

Vol-5 Issue-4 2019 IJARIIE-ISSN(O)-2395-4396

24885 ijariie.com 1747

Chaos experiments are usually run in a simulation of the production environment that is as accurate as

possible. This is a protective measure to prevent a worst-case scenario that could occur when testing in

production. You also need to have proper control over the system environment in case the experiment goes

sideways.

4. Automate Experiments - Running experiments on a system is usually an interesting job and requires a lot of

creativity. However, running the experiments manually will take engineers away from more meaningful

work. Once an experiment has been established, with its outputs logged and its range of conditions set, you

should automate it to explore a wider range of conditions. To continuously run the experiments, automate the

process and let the software take care of the rest.

5. Understand Blast Radius - Experimenting in production is a bold move and can potentially cause

unnecessary pain to the customer. While small incidents can be handled quickly, the chaos engineer must

ensure that any fallout is contained and minimized. Additionally, you should also have the incident response

team on-call to handle incident management.

How Does Chaos Engineering Work?

In chaos engineering, everything is an experiment, and each experiment starts with a specific fault injected into the

system. Later, the admins observe what actually happened and compare it to what they thought would happen. Chaos

engineering experiments generally involve two groups of engineers. The first group generally controls the failure

injection and the second one deals with the effects. Here’s the step-by-step flow of chaos engineering experiments in

practice:

1. Define the system’s steady state as a measurable output that indicates normal behavior.

2. Hypothesize how the system’s output will change in the experimental groups compared to the control group.

3. Introduce variables that reflect real-life events ranging from hardware and software failure to non-failure

events like traffic spikes.

4. Work on disproving the hypothesis by comparing the system’s steady state in both control and experimental

groups.

The confidence in the system’s behavior grows if it turns out to be harder to disrupt the system’s steady state.

Alternatively, if you discover a weakness, then work to improve it before the behavior manifests in the system at

large.

Chaos Engineering Maturity Model

As organizations mature and expand, chaos engineering offers more opportunities and techniques to enhance the

resiliency and reliability of the enterprise. We listed down the various stages of maturity based on capabilities to

provide a clear understand of the overall journey.

Stage Of Maturity Maturity Definition

Beginner 1. Non-Availability of Non-Functional requirements

2. Stake holder have no to little knowledge about the resiliency

parameters

3. Basic awareness about what could go wrong in terms of application

or infrastructure reliability

4. Leverage Dev environment for Chaos experiments to perform

Basic disruption

5. Adhoc Chaos experiments.

6. Use of Enterprise Chaos engineering tools or Home-grown scripts

Intermediate 1. Non-Functional requirements related to Chaos testing are defined

for some of the use cases

Vol-5 Issue-4 2019 IJARIIE-ISSN(O)-2395-4396

24885 ijariie.com 1748

2. Stakeholders are aware about the resiliency parameters

3. Teams involved understand their roles and responsibility to make

each component of the application. with dedicated team members

working on Chaos Engineering

4. Some of the tests are run in Production environment manually

while most of the tests are run in non-production environment

5. Test results have to be manually curated

6. Experiments are integrated with Continuous delivery and business

impact is measured

7. Use of Enterprise Tools to perform Chaos engineering experiments

Emerging 1. Well defined Non-Functional requirements related to Chaos testing

are defined for most of the use cases

2. Stakeholders are well aware about the resiliency parameters

3. Teams involved understand their roles and responsibility to make

each component of the application resilient and work towards it in

all project phases

4. Most of the tests are run in Production environment with automated

setup and result analysis capabilities

5. Experiments are integrated with Continuous delivery and business

impact is measured.

6. Use of Enterprise Tools to perform Chaos engineering experiments

Advanced 1. Well defined Non-Functional requirements

2. Stakeholders participate in Chaos experiments by default as they

contribute to enhance the application resiliency

3. Teams involved considers Chaos experimentation as mandatory in

onboarding plan

4. Chaos Experiments is carried out in each step of development and

in production environment.

5. Chaos test design, execution, and early termination are fully

automated and are dynamic in nature

6. Use of Enterprise Tools to perform Chaos engineering experiments

It’s important to note that chaos engineering offers many benefits regardless of your organization’s maturity model.

Starting sooner can give you more time to develop your expertise in the area.

Conclusion: -

The goal of chaos engineering is to improve a system’s reliability and resilience, which makes it an essential part of

any mature SRE (site reliability engineering) solution. The chaos engineering mindset also helps DevOps teams work

with unpredictability. Many SRE practices such as SLOs (service level objectives), retrospectives, and runbooks can

integrate with chaos engineering to improve efficiency.

The impact of SLOs on chaos engineering is important to determine the impact of a hypothetical failure, which is not

exactly easy. Chaos engineering also helps SRE teams improve their runbooks by giving them more opportunities to

evaluate them. It also helps them build a library of incident retrospectives as teams write retrospectives for chaos

experiments as they would for a real event enhancing reliability and net promoter index.

Vol-5 Issue-4 2019 IJARIIE-ISSN(O)-2395-4396

24885 ijariie.com 1749

Reference:

1. https://linearb.io/dev-interrupted/blog/chaos-engineering-the-practice-behind-controlling-

chaos?_bt=&_bk=&_bm=&_bn=x&_bg=&utm_term=&utm_medium=cpc&utm_campaign=PMax&utm_s

ource=google&gad_source=1&gclid=CjwKCAjwuMC2BhA7EiwAmJKRrKMNzOt3q3KfGHfP83CcNt5l

woIE_9htWd9qkJRf_rJ4mdFEzdStUxoCrtkQAvD_BwE

2. http://techblog.netflix.com/2012/07/chaosmonkeyreleasedintowild.html

3. http://queue.acm.org/detail.cfm?id=2371297

4. https://azure.microsoft.com/enus/blog/insideazuresearchchaosengineering/

5. http://www.datacenterknowledge.com/archives/2014/09/15/facebookturnedoffentiredatacent ertotest-

resiliency/

6. http://techblog.netflix.com/2014/10/fitfailureinjectiontesting.html

7. http://techblog.netflix.com/2015/02/spspulseofnetflixstreaming.html

8. https://www.usenix.org/system/files/conference/osdi14/osdi14paperyuan.pdf

9. Sam Newman: Building Microservices, O'Reilly Media, Feb. 2015.

https://linearb.io/dev-interrupted/blog/chaos-engineering-the-practice-behind-controlling-chaos?_bt=&_bk=&_bm=&_bn=x&_bg=&utm_term=&utm_medium=cpc&utm_campaign=PMax&utm_source=google&gad_source=1&gclid=CjwKCAjwuMC2BhA7EiwAmJKRrKMNzOt3q3KfGHfP83CcNt5lwoIE_9htWd9qkJRf_rJ4mdFEzdStUxoCrtkQAvD_BwE
https://linearb.io/dev-interrupted/blog/chaos-engineering-the-practice-behind-controlling-chaos?_bt=&_bk=&_bm=&_bn=x&_bg=&utm_term=&utm_medium=cpc&utm_campaign=PMax&utm_source=google&gad_source=1&gclid=CjwKCAjwuMC2BhA7EiwAmJKRrKMNzOt3q3KfGHfP83CcNt5lwoIE_9htWd9qkJRf_rJ4mdFEzdStUxoCrtkQAvD_BwE
https://linearb.io/dev-interrupted/blog/chaos-engineering-the-practice-behind-controlling-chaos?_bt=&_bk=&_bm=&_bn=x&_bg=&utm_term=&utm_medium=cpc&utm_campaign=PMax&utm_source=google&gad_source=1&gclid=CjwKCAjwuMC2BhA7EiwAmJKRrKMNzOt3q3KfGHfP83CcNt5lwoIE_9htWd9qkJRf_rJ4mdFEzdStUxoCrtkQAvD_BwE
https://linearb.io/dev-interrupted/blog/chaos-engineering-the-practice-behind-controlling-chaos?_bt=&_bk=&_bm=&_bn=x&_bg=&utm_term=&utm_medium=cpc&utm_campaign=PMax&utm_source=google&gad_source=1&gclid=CjwKCAjwuMC2BhA7EiwAmJKRrKMNzOt3q3KfGHfP83CcNt5lwoIE_9htWd9qkJRf_rJ4mdFEzdStUxoCrtkQAvD_BwE
http://techblog.netflix.com/2012/07/chaosmonkeyreleasedintowild.html
http://queue.acm.org/detail.cfm?id=2371297
https://azure.microsoft.com/enus/blog/insideazuresearchchaosengineering/
http://www.datacenterknowledge.com/archives/2014/09/15/facebookturnedoffentiredatacent%20ertotestresiliency/
http://www.datacenterknowledge.com/archives/2014/09/15/facebookturnedoffentiredatacent%20ertotestresiliency/
http://techblog.netflix.com/2014/10/fitfailureinjectiontesting.html
http://techblog.netflix.com/2015/02/spspulseofnetflixstreaming.html

