Computer Aided Process Design for Hydrogenation of Oil using Jet Loop Reactor

Bhavika J. Parmar¹, Prof. S. M. Dutta², Prof. S. B. Thakore³

¹Chemical Engg. Dept., L. D. College of Engineering, Ahmedabad – 380015 ²Chemical Engg. Dept., L. D. College of Engineering, Ahmedabad – 380015 ³Chemical Engg. Dept., L. D. College of Engineering, Ahmedabad – 380015

Abstract:

The paper presented here is study about jet loop reactor technology for hydrogenation amination alkylation. A Jet Loop Reactor consists of a reaction autoclave, a circulation pump, a heat exchanger, a venturi type ejector similar to Stirred Tank Reactor but is arranged in a completely different way. To provide ease to designing, a scilab based program is developed and tested for two types of oil, soyabean oil as well as palm oil.

Keyword: Evaporative Condenser, Design of Condenser, scilab, Program for Evaporative Condenser

1. INTRODUCTION

The Loop Reactor consists of a reaction autoclave, a circulation pump, a heat exchanger and a venturi type ejector. This system requires the same number of elements as that of a stirred vessel system, but is arranged in a completely different way.

The reaction vessel of a Loop Reactor does not need baffles and is normally built with a larger L/D than the stirred vessel and is thus lower in cost, especially for high-pressure reactions.

The external heat exchanger are built as large as needed and is not limited by the reactor's working volume. The full heat exchanger area is available, also if the reactor is operated with reduced working volumes.

The circulation pump allows high power input per m³ working volume in those cases where high mass transfer rates have to be achieved.

Pump designs with mechanical seals that can be operated at pressures of up to 200 bar g. A unique impeller and a special hydrodynamic pump house profile allow pumping of liquids with a high solid content and high gas loads, without the aid of an inducer and thus avoiding abrasion problems where heterogeneous catalysts are used.

The down flow Jet Mixer is a high performance gassing tool. The ability to finely disperse very small gas bubbles to the liquid with a gas-liquid ratio between 0.5 and 2.0, or even more, makes this an ideal tool for gas-liquid reactions.

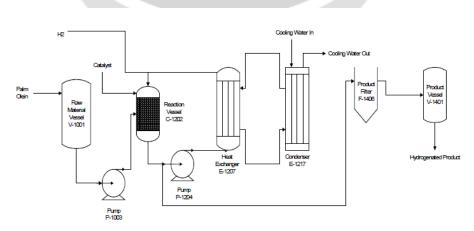


Fig. 1 Process flow design for Hydrogenation of Palm Oil

Advantages

Jet Loop Reactor possess several benefits which makes it substantial for various industrial applications, these benefits include; Firstly, it promotes a faster reaction rate by exerting its higher mass transfer rate & mixing intensity as compare to continuous stirred tank reactor (CSTR).

Secondly, absence of moving parts in jet loop reactors eliminates the sealing problems and allows easier operation at elevated pressure. Third, Length to diameter ratio of jet reactor is higher than same of agitated vessel, thus it requires less cost particularly for high pressure reactions.

Next, the external heat exchanger can be built as needed and can have accurate temperature control even if the reactor is operated with reduced working volumes.

Moreover, the maximum power input per unit volume is often a limiting factor, especially for large reactors with an agitator. Since there is no agitator in the jet reactor, this limitation does not exist.

Lastly, the circulation pump can provide very high power per m³ of working volumes if it is required to achieve the desired mass transfer rate

Properties	Palm oil	Soybean oil
Density, Kg/L	0.856	0.825
Specific heat, KJ/(Kg. ^o C)	2.56	2.56
Viscosity, mPa. s	2.387	2.0
Thermal conductivity, W/(m.º C)	0.1664	0.16
Fire Point(⁰ C)	341	342
Flash Point(⁰ C)	314	317
Iodine Value(g/100g)	<u>50.6 - 55</u>	125 - 128
Melting Point (⁰ C)	30.8	0.6
Ponification value (mg KOG/g oil)	<u>190 -</u> 202	188 - 195
Smoke point (⁰ C)	223	-
Unsaponifiable (g)	0.2 - 1.0	<= 15

Table 1: Properties comparison Palm Oil and Soybean Oil

2. DESIGN EQUATIONS

The preliminary design equations that are employed in the design of jet loop rector are as follows: Volume of inside the jet reactor

Volume of inside the jet reactor $V_{\rm L} = \pi/4 \text{ D}_{\rm i}^2 \text{ h}_{\rm i} + \text{inside volume of torispherical head}$

 $\begin{aligned} \mathbf{Height} & \text{ of the liquid in the reactor} \\ \mathbf{h}_{L} = 1.5 \ D_{i} \end{aligned}$

Diameter of Reactor $V_{L} = \pi/4 D_{i}^{2} h_{i} + 0.084672 D_{i}^{3} + \pi/4 D_{i}^{2} S_{F}$

Total height of reactor

 $H = 2*D_i$

Other equations employed are based on Kern's method of Shell and Tube Heat Exchanger is used for design of preheater as well as cooler.

3. CASE STUDY

Case Study - 1 (Hydrogenation of Soybean Oil)

Hydrogenation of edible oil is carried out to produce 'vanaspati oil' (hydrogenated fat) in presence of nickel catalyst in a batch reactor. In the standard age old process, edible oil is hydrogenated at about 2 bar g and 160-175 0 C in 8 to 10hours (excluding heating / cooling). During this period, iodine value of mass is reduced from 128 to 68. Final mass has a melting (split) point of 39 0 C. The batch reactor has jacket for heating the initial charge with circulation hot oil. Cooling requirements are met by passing cooling water in internal coils. In a newly developed jet reactor, it is planned to complete the reaction in 5 hours by improving mass transfer in the reactor and cooling the mass in external heat exchanger, thereby maintaining near isothermal conditions.

Soybean oil, having iodine value (IV) of 128 is to be hydrogenated in the jet reactor at 5 bar g and 165 C. initially the charge is heated from 30C to 140C with the circulating hot oil external heat exchanger. Hydrogen is introduced in hot soybean oil and pressure is maintained in the reactor at 5 bar g. reaction is exothermic and the

temperature of mass increases. Cold oil flow in the external heat exchanger controls the temperature at 165 C as per the requirement; IV reduction is desired up to 68 when the reaction is considered over. Thereafter hydrogenated mass is cooled to 60C IN about 1.5h before it is discharged to filter. 150 kg spent nickel catalyst is charged with soybean oil while fresh 5 to 10 kg nickel catalyst is charged at intervals in the reactor under pressure. A bleed is maintained from the system to purge out water vapor and non-condensables. Design the jet reactor for the following duty.

- 1] Charge = 10t soybean oil with 128 IV
- 2] Average molar mass of soybean oil = 278
- 3] Average chain length of fatty acids = 17.78
- 4] Product specifications: 68IV, 39 ⁰C melting point (max.). Assume linear drop of IV in 5 hours.
- 5] Average exothermic heat of reaction = 7.1 kJ/kg of IV reduction
- 6] Hydrogen feed rate = 110 to 125 Nm^3/h
- Bleed rate = 1 to $2 \text{ Nm}^3/\text{h}$

7] Thermic fluid or oil is used as both, heating medium in starting of reaction and cooling medium in running of reaction.

8] Cooling water is available at 2 bar g and 32C a rise of 5C is permitted. Cooling water is used for cooling water is used for cooling the oil from 80C to 70C in oil cooler (HE-2) of oil cycle.

9] Assume following properties of fluids for the design.

Average properties of edible oil and circulating oil

Table	2: Properties	of Soybean	Oil
-------	---------------	------------	-----

Properties	Soybean oil or hardened fat	Circulating oil(thermic fluid)
Density ,kg/L	0.825	0.71
Specific heat, kJ/(kg ⁰ C)	2.56	2.95
Viscosity, mPa s	2.0	0.5
Thermal conductivity, $W/(m^0C)$	0.16	0.1

Case Study -2 (Hydrogenation of Palm Oil)

Hydrogenation of palm oil is carried out to produce (hydrogenated fat) in the presence of nickel catalyst in batch reactor. In which iodine value of the mass is reduced from 64 to 10. The batch reactor has a jacket for heating the initial charge with circulating hot oil. Cooling requirements are met by passing cooling water in internal coils. In a newly developed jet loop reactor, it is planned to complete the reaction in 3 hours by improving mass transfer in the reactor and cooling the mass in external heat exchanger, thereby maintaining near isothermal condition. Palm oil, having iodine value (IV) of 64 is to be hydrogenated in the jet reactor at 5 bar g and 195° C. initially the charge is heated from 50° C to 160° C with the circulating hot oil external heat exchanger. Hydrogen is introduced in hot palm oil and pressure is maintained in the reactor at 5 bar g. reaction is exothermic and the temperature of mass increases. Cold oil flow in the external heat exchanger controls the temperature at 195° C as per the requirement; IV reduction is desired up to 10 when the reaction is considered over. Thereafter hydrogenated mass is cooled to 110° C in about 1.5 h before it is discharged to filter. 150 kg spent nickel catalyst is charged with palm oil while fresh 5 to 10 kg nickel catalyst is charged at intervals in the reactor under pressure. A bleed is maintained from the system to purge out water vapor and non-condensable.

Input Parameters for the Design

The presented design of jet reactor incorporates charge of 1t palm oil 64 IV for a product specification of 10 IV, 24°C melting point (max).

The following data is taken into consideration:

- Average molar mass of palm oil is 270
- Average chain length of fatty acids is 16.98
- Average exothermic heat of reaction is 0.942 kcal /kg or 3.941 kJ /kg
- Hydrogen feed rate is from 110 to 125 Nm³/h
- Bleed rate is 1 to $2 \text{ Nm}^3/\text{h}$

Thermic fluid or oil is used as both, heating medium in starting of reaction and cooling medium in running of reaction. Cooling water is available at 2 bar g and 32° C. A rise of 5° C is permitted over here. Cooling water is used for cooling the oil from 80° C to 70° C in oil cooler (HE-2) of oil cycle.

The following average properties of fluids for the design are taken: **Table 3: Properties of Palm Oil**

Properties	Palm oil or hardened fat	Circulating oil (thermic fluid)
Density, kg / L	0.856	0.71
Specific heat, kJ /(kg°C)	2.56	2.95
Viscosity, mPa s	2.387	0.5
Thermal conductivity, W/(m°C)	0.1664	0.1

3. RESULTS

The case study on soybean oil was run on program and was verified with the results given in the text. The results obtained for the case study is tabulated as below.

Table 4: Results obtained via program as well as given in-text for process design of Soybean Oil

Sr. No.	Properties	Results by Program	Results by Manual
		Program	Calculation
1	Volume of inside the jet reactor		12.12 m^3
2	Diameter of Reactor	2.6449142 m	2.115m
3	Total height of reactor	5.2898 m	4.23m
-	Shell and Tube Heat Exchanger used for cooling		1.25111
4	Heat Duty Required	236.856 kW	236.67 kW or
-			852000 kJ/h
5	Mean temp. difference	87.14117° C	87.141°C
6	Tube side mass velocity $(kg/m^2 \cdot s)$	1237.5 kg / m^2 s	1237kg / m ² s
7	Tube side flow area (m^2)	0.0131.481 m ²	0.013148 m ²
8	Total number of tube	33.2864 == 34	34
9	Tube side Reynold's Number	13673.137	13673.14
10	Tube side Prandtl's Number	32	32
11	Tube side heat transfer coefficient	1063.8708 W/m ² °C	1063.87 W/m ² °C
Baffle spa	affle =25 % cut segmental acing, $B_s = 150mm$		
		1	
12 13	Shell side flow area	0.00762 m^2	$\frac{7.62 \times 10^{-3} \text{ m}^2}{1052.89 \text{kg/m}^2 \text{s}}$
13	Shell side mass velocity Shell side velocity	1053.6768 kg/m ² s 1.4840518 m/s	1.483m/s
14	Shell side equivalent diameter	18.31467m	1.48500/8 18.3147 m
15	Shell side Reynold's numbers	38595.484	38566.7
10	Shell side Prandtl's numbers	14.75	14.75
17	Shell side heat transfer coefficient	14.75 1591.4751W/m ² °C	14.75 1408.8 W/m ² °C
	The side feature coefficients h_{od} = 5000 W/m ² °C		1408.8 W/III C
Palm oil s	ide fouling coefficients, h_{id} =3000 W/m ² ⁰ C		
	erial = SS 316		
	conductivity of tube material $k_w = 16.26 \text{ W/m}^{20}\text{C}$		
19	Overall heat transfer coefficient	416.54873 W/m ² C	416.5W/m ² °C
20	Heat transfer area required	6.5252204 m ²	6.52 m ²
21	Length of tube	2.4063174 = 3 m	2.403 m
22	Heat Transfer Area Provided	6.5252204m ²	8.139 m ²
23	% excess heat transfer area	24.671835%	24.83 %

$J_{f} = 0.04$	7		
24	Tube side pressure drop	6.8563565 kPa	6.856 kPa
25	Shell side pressure drop	69.397057 kPa	69.3 kPa
Parame	ters of Shell and Tube Heat Exchanger used for	r preheating of Soybean Oil	before Reaction (HE -1)
26	Time required for heating the palm oil from 50) to 160	7600 s
27	K ₂ Constant	1.0812546	1.0813
28	Temperature of heating medium inlet, t ₁	235.919227 °C	217.83°C
Design	of cooler of oil cycle (HE - 2)	·	
BEM ty	pe fixed tube sheet		
Tube sid	de fluid : cooling water		
	de fluid oil : (Thermic oil)		
Cooling	water inlet temp. = $32^{\circ}C$		
Cooling	water outlet temp. = $37^{\circ}C$		
29	Cooling water flow rate	40731.9012kg/h	40700 kg/h
30	Mean Temperature Difference	40.448507° C	40.04485° C
31	Volumetric flow rate of water	0.0113804 m ³ /h	$0.01137 \text{ m}^3/\text{h}$
32	Tube side flow area	0.0075869 m ²	$7.58 \times 10^{-3} \text{ m}^2$
33	Number of tubes	77.942= =78	78
For 25.4	mm triangular pitch , $N_p = 2$, shell ID = 305mm		
34	Tube side Reynold's numbers	32171.287	32171.3
35	Tube Side Prandtl's numbers	4.8668217	4.867
36	Heat Transfer Coefficient of Tube Side	6240.6211 W/m ² °C	6240.7 W/m ² °C
37	Shell side flow area	0.0095312 m ²	$9.5312 \times 10^{-3} \text{ m}^2$
38	Shell side mass velocity	842.38866kg/m ² s	841.757 kg/m ² s
39	Shell side velocity	1.1864629m/s	1.1856m/s
40	Shell side equivalent diameter	18.25 mm	18.25 mm
41	Shell side Reynolds numbers	30742	30742
42	Shell side Prandtl's number	14.75	14.75
43	Shell side heat transfer coefficient	1409.4981 W/m ² °C	1408.8
44	Overall heat transfer coefficient	723.84589 W/m ² °C	723.66 W/m ² °C
45	Heat transfer area required	8.1714774m ²	8.167 m ²
46	Tube length	1.7513839 = 2m	1.7495 m
47	Area Available	9.331452m ²	9.336 m ²
48	% excess heat transfer area	14.195409%	14.31%
49	Tube side pressure drop	13.547012 kPa	13.547 kPa
50	Shell side pressure drop	43.83644kPa	43.06 kPa

The case study on palm oil was run on program and was verified with the results obtained by design calculations. The results obtained for the case study is tabulated as below.

Table 5: Results obtained via program as well as manual calculation for process design of Palm Oil	Table 5: Results obtained via r	program as well as manua	l calculation for proces	ss design of Palm Oil
--	---------------------------------	--------------------------	--------------------------	-----------------------

Sr.	Properties	Results obtained by	Results by
No.		Coding in scilab	Design
			Calculation
1	Volume of inside the jet reactor		11.682 m^3
2	Diameter of Reactor	2.645 m	2.1 m
3	Total height of reactor	5.2898 m	4.2 m
Design	of Shell and Tube Heat Exchanger used for coolir	ng of Palm Oil (HE – 1)	
4	Heat Duty Required	197.2 kW	196.99 kW or
			425628 kJ/h
5	Mean temp. difference	117.14 °C	117.1459° C
6	Tube side mass velocity $(kg/m^2 \cdot s)$	1284 kg / m^2 s	1284 kg / m ² s
7	Tube side flow area (m^2)	0.0127 m^2	0.012671 m ²
8	Total number of tube	33.04 == 34	34

9	Tube side Reynold's Number	11886.817	11886
10	Tube side Prandtl's Number	36.723	36
10	Tube side heat transfer coefficient	1035.17 W/m ² °C	1028.339 W/m ² °C
	m (1 in) OD and 31.75 (1.25 in) triangular pitch;		1020.000 11/111 0
	f baffle =25 % cut segmental		
	spacing, $B_s = 150 \text{mm}$		
12	Shell side flow area	0.00762 m^2	$7.62 \times 10^{-3} \text{ m}^2$
13	Shell side mass velocity	877.3 kg/m ² s	876.350 kg/m ² s
14	Shell side velocity	1.236 m/s	1.2342 m/s
15	Shell side equivalent diameter	18.3146 m	18.3147 m
16	Shell side Reynold's numbers	32134.81	32100.175
17	Shell side Prandtl's numbers	14.75	14.75
18	Shell side heat transfer coefficient	1438.94 W/m ² °C	1438.080 W/m ² °C
	c fluid (oil) side fouling coefficients, h _{od} =5000 W/m		
	il side fouling coefficients, h_{id} =3000 W/m ² ⁰ C		
	aterial = SS 316		
	al conductivity of tube material $k_w = 16.26 \text{ W/m}^{2.0}\text{C}$		
19	Overall heat transfer coefficient	435.94 W/m ² C	399.2075 W/m ² C
20	Heat transfer area required	3.8615 m ²	4.21248 m ²
21	Length of tube	1.42 = 2 m	1.5526 m
22	Heat Transfer Area Provided	5.4234 m ²	5.4261 m ²
23	% excess heat transfer area	40.44%	28.81 %
$R_{e} = 11$	886 and 25 % cur segmental baffles		
$J_{f} = 0.0$			
		5.684 kPa	7.323 kPa
24	Tube side pressure drop	J.004 KF a	7.525 Ki u
24 25	Tube side pressure drop Shell side pressure drop	36.0812 kPa	53.97 kPa
25	Shell side pressure drop	36.0812 kPa	53.97 kPa
25	Shell side pressure drop eters of Shell and Tube Heat Exchanger used for	36.0812 kPa preheating of Palm Oil befo	53.97 kPa
25 Param	Shell side pressure drop	36.0812 kPa preheating of Palm Oil befo	53.97 kPa ore Reaction (HE -1)
25 Param 26	Shell side pressure drop eters of Shell and Tube Heat Exchanger used for Time required for heating the palm oil from 50 K ₂ Constant	36.0812 kPa preheating of Palm Oil before to 160	53.97 kPa ore Reaction (HE -1) 7600 s
25 Param 26 27 28	Shell side pressure drop eters of Shell and Tube Heat Exchanger used for Time required for heating the palm oil from 50	36.0812 kPa preheating of Palm Oil before to 160 1.05346	53.97 kPa ore Reaction (HE -1) 7600 s 1.0463
25 Param 26 27 28 Design	Shell side pressure drop eters of Shell and Tube Heat Exchanger used for Time required for heating the palm oil from 50 K ₂ Constant Temperature of heating medium inlet, t ₁	36.0812 kPa preheating of Palm Oil before to 160 1.05346	53.97 kPa ore Reaction (HE -1) 7600 s 1.0463
25 Param 26 27 28 Design BEM t Tube s	Shell side pressure drop eters of Shell and Tube Heat Exchanger used for Time required for heating the palm oil from 50 K ₂ Constant Temperature of heating medium inlet, t ₁ of cooler of oil cycle (HE - 2) ype fixed tube sheet ide fluid : cooling water	36.0812 kPa preheating of Palm Oil before to 160 1.05346	53.97 kPa ore Reaction (HE -1) 7600 s 1.0463
25 Param 26 27 28 Design BEM t Tube s Shell s	Shell side pressure drop eters of Shell and Tube Heat Exchanger used for Time required for heating the palm oil from 50 K_2 Constant Temperature of heating medium inlet, t_1 of cooler of oil cycle (HE – 2) ype fixed tube sheet ide fluid : cooling water ide fluid oil : (Thermic oil)	36.0812 kPa preheating of Palm Oil before to 160 1.05346	53.97 kPa ore Reaction (HE -1) 7600 s 1.0463
25 Param 26 27 28 Design BEM t Tube s Shell s Cooling	Shell side pressure drop eters of Shell and Tube Heat Exchanger used for Time required for heating the palm oil from 50 K ₂ Constant Temperature of heating medium inlet, t ₁ of cooler of oil cycle (HE – 2) ype fixed tube sheet ide fluid : cooling water ide fluid oil : (Thermic oil) g water inlet temp. = 32° C	36.0812 kPa preheating of Palm Oil before to 160 1.05346	53.97 kPa ore Reaction (HE -1) 7600 s 1.0463
25 Param 26 27 28 Design BEM t Tube s Shell s Cooling Cooling	Shell side pressure drop eters of Shell and Tube Heat Exchanger used for Time required for heating the palm oil from 50 K_2 Constant Temperature of heating medium inlet, t_1 of cooler of oil cycle (HE – 2) ype fixed tube sheet ide fluid : cooling water ide fluid oil : (Thermic oil) g water inlet temp. = 32°C g water outlet temp. = 37°C	36.0812 kPa preheating of Palm Oil befo to 160 1.05346 322.9197℃	53.97 kPa ore Reaction (HE -1) 7600 s 1.0463 321.605477 °C
25 Param 26 27 28 Design BEM t Tube s Shell s Cooling Cooling 29	Shell side pressure drop eters of Shell and Tube Heat Exchanger used for Time required for heating the palm oil from 50 K ₂ Constant Temperature of heating medium inlet, t ₁ of cooler of oil cycle (HE – 2) ype fixed tube sheet ide fluid : cooling water ide fluid oil : (Thermic oil) g water inlet temp. = 32° C g water outlet temp. = 37° C Cooling water flow rate	36.0812 kPa preheating of Palm Oil befo to 160 1.05346 322.9197℃	53.97 kPa ore Reaction (HE -1) 7600 s 1.0463 321.605477 °C 33877.73 kg/h
25 Param 26 27 28 Design BEM t Tube s Shell s Cooling Cooling 29 30	Shell side pressure dropeters of Shell and Tube Heat Exchanger used forTime required for heating the palm oil from 50 K_2 ConstantTemperature of heating medium inlet, t_1 of cooler of oil cycle (HE - 2)ype fixed tube sheetide fluid : cooling wateride fluid oil : (Thermic oil)g water inlet temp. = 32° Cg water outlet temp. = 37° CCooling water flow rateMean Temperature Difference	36.0812 kPa preheating of Palm Oil befo to 160 1.05346 322.9197°C 33912 kg/h 40.04° C	53.97 kPa ore Reaction (HE -1) 7600 s 1.0463 321.605477 °C 33877.73 kg/h 40.04° C
25 Param 26 27 28 Design BEM t Tube s Shell s Cooling 29 30 31	Shell side pressure drop eters of Shell and Tube Heat Exchanger used for Time required for heating the palm oil from 50 K ₂ Constant Temperature of heating medium inlet, t ₁ of cooler of oil cycle (HE – 2) ype fixed tube sheet ide fluid : cooling water ide fluid oil : (Thermic oil) g water inlet temp. = 32° C g water outlet temp. = 37° C Cooling water flow rate	36.0812 kPa preheating of Palm Oil befo to 160 1.05346 322.9197°C 33912 kg/h 40.04° C 0.009475 m ³ /h	53.97 kPa ore Reaction (HE -1) 7600 s 1.0463 321.605477 °C 33877.73 kg/h 40.04° C 9.465 × 10 ⁻³ m ³ /h
25 Param 26 27 28 Design BEM t Tube s Shell s Cooling 29 30 31 32	Shell side pressure dropeters of Shell and Tube Heat Exchanger used forTime required for heating the palm oil from 50K2 ConstantTemperature of heating medium inlet, t_1 of cooler of oil cycle (HE - 2)ype fixed tube sheetide fluid : cooling wateride fluid oil : (Thermic oil)g water outlet temp. = 32° Cg water outlet temp. = 37° CCooling water flow rateMean Temperature DifferenceVolumetric flow rate of waterTube side flow area	36.0812 kPa preheating of Palm Oil before to 160 1.05346 322.9197°C 33912 kg/h 40.04°C 0.009475 m ³ /h 0.00632 m ²	53.97 kPa ore Reaction (HE -1) 7600 s 1.0463 321.605477 °C 33877.73 kg/h 40.04 °C 9.465 × 10 ⁻³ m ³ /h 6.3102 × 10 ⁻³ m ²
25 Param 26 27 28 Design BEM t Tube s Shell s Cooling Cooling 29 30 31 32 33	Shell side pressure dropeters of Shell and Tube Heat Exchanger used forTime required for heating the palm oil from 50K2 ConstantTemperature of heating medium inlet, t_1 of cooler of oil cycle (HE - 2)ype fixed tube sheetide fluid : cooling wateride fluid oil : (Thermic oil)g water outlet temp. = 32° Cg water outlet temp. = 37° CCooling water flow rateMean Temperature DifferenceVolumetric flow rate of waterTube side flow areaNumber of tubes	36.0812 kPa preheating of Palm Oil befo to 160 1.05346 322.9197°C 33912 kg/h 40.04° C 0.009475 m ³ /h	53.97 kPa ore Reaction (HE -1) 7600 s 1.0463 321.605477 °C 33877.73 kg/h 40.04° C 9.465 × 10 ⁻³ m ³ /h
25 Param 26 27 28 Design BEM t Tube s Shell s Cooling Cooling 29 30 31 32 33 For 25.	Shell side pressure dropeters of Shell and Tube Heat Exchanger used forTime required for heating the palm oil from 50 K_2 ConstantTemperature of heating medium inlet, t_1 of cooler of oil cycle (HE - 2)ype fixed tube sheetide fluid : cooling wateride fluid : cooling wateride fluid oil : (Thermic oil)g water outlet temp. = 32° Cg water outlet temp. = 37° CCooling water flow rateMean Temperature DifferenceVolumetric flow rate of waterTube side flow areaNumber of tubes4 mm triangular pitch , N_p =2 , shell ID = 305mm	36.0812 kPa preheating of Palm Oil before to 160 1.05346 322.9197°C 33912 kg/h 40.04° C 0.009475 m ³ /h 0.00632 m ² 64.85 = = 65	53.97 kPa re Reaction (HE -1) 7600 s 1.0463 321.605477 °C 33877.73 kg/h 40.04° C 9.465 × 10 ⁻³ m ³ /h 6.3102 × 10 ⁻³ m ² 66
25 Param 26 27 28 Design BEM t Tube s Shell s Cooling Cooling 29 30 31 32 33 For 25. 34	Shell side pressure dropeters of Shell and Tube Heat Exchanger used forTime required for heating the palm oil from 50 K_2 ConstantTemperature of heating medium inlet, t_1 of cooler of oil cycle (HE – 2)ype fixed tube sheetide fluid : cooling wateride fluid oil : (Thermic oil)g water outlet temp. = 32° Cg water outlet temp. = 37° CCooling water flow rateMean Temperature DifferenceVolumetric flow rate of waterTube side flow areaNumber of tubes4 mm triangular pitch , $N_p=2$, shell ID = 305 mmTube side Reynold's numbers	36.0812 kPa preheating of Palm Oil befo to 160 1.05346 322.9197°C 33912 kg/h 40.04° C 0.009475 m ³ /h 0.00632 m ² 64.85 = = 65 32171.3	53.97 kPa re Reaction (HE -1) 7600 s 1.0463 321.605477 °C 33877.73 kg/h 40.04 °C 9.465 × 10 ⁻³ m ³ /h 6.3102 × 10 ⁻³ m ² 66 32171.3
25 Param 26 27 28 Design BEM t Tube s Shell s Cooling 29 30 31 32 33 For 25. 34 35	Shell side pressure dropeters of Shell and Tube Heat Exchanger used forTime required for heating the palm oil from 50 K_2 ConstantTemperature of heating medium inlet, t_1 of cooler of oil cycle (HE – 2)ype fixed tube sheetide fluid : cooling wateride fluid oil : (Thermic oil)g water outlet temp. = 32° Cg water outlet temp. = 37° CCooling water flow rateMean Temperature DifferenceVolumetric flow rate of waterTube side flow areaNumber of tubes4 mm triangular pitch , N_p =2 , shell ID = 305mmTube side Reynold's numbersTube Side Prandtl's numbers	36.0812 kPa preheating of Palm Oil before to 160 1.05346 322.9197°C 33912 kg/h 40.04°C 0.009475 m ³ /h 0.00632 m ² 64.85 = = 65 32171.3 4.866	$\begin{array}{c} 53.97 \text{ kPa} \\ \hline \textbf{ore Reaction (HE -1)} \\ 7600 \text{ s} \\ 1.0463 \\ 321.605477 ^{\circ}\text{C} \\ \hline \end{array} \\ \hline 33877.73 \text{ kg/h} \\ 40.04 ^{\circ}\text{ C} \\ 9.465 \times 10^{-3} \text{ m}^3/\text{h} \\ 6.3102 \times 10^{-3} \text{ m}^2 \\ 66 \\ \hline \end{array} \\ \hline \begin{array}{c} 32171.3 \\ 4.867 \\ \hline \end{array}$
25 Param 26 27 28 Design BEM t Tube s Shell s Cooling 29 30 31 32 33 For 25. 34 35 36	Shell side pressure dropeters of Shell and Tube Heat Exchanger used forTime required for heating the palm oil from 50 K_2 ConstantTemperature of heating medium inlet, t_1 of cooler of oil cycle (HE – 2)ype fixed tube sheetide fluid i: cooling wateride fluid oil : (Thermic oil)g water outlet temp. = 32° Cg water outlet temp. = 37° CCooling water flow rateMean Temperature DifferenceVolumetric flow rate of waterTube side flow areaNumber of tubes4 mm triangular pitch , N_p=2 , shell ID = 305mmTube Side Prandtl's numbersTube Side Prandtl's numbersHeat Transfer Coefficient of Tube Side	36.0812 kPa preheating of Palm Oil before to 160 1.05346 322.9197°C 33912 kg/h 40.04°C 0.009475 m ³ /h 0.00632 m ² 64.85 = = 65 32171.3 4.866 6240.62 W/m ² °C	53.97 kPa re Reaction (HE -1) 7600 s 1.0463 321.605477 °C 33877.73 kg/h 40.04° C 9.465 × 10 ⁻³ m ³ /h 6.3102 × 10 ⁻³ m ² 66 32171.3 4.867 6340.7 W/m ² °C
25 Param 26 27 28 Design BEM t Tube s Shell s Cooling 29 30 31 32 33 For 25. 34 35	Shell side pressure dropeters of Shell and Tube Heat Exchanger used forTime required for heating the palm oil from 50 K_2 ConstantTemperature of heating medium inlet, t_1 of cooler of oil cycle (HE – 2)ype fixed tube sheetide fluid : cooling wateride fluid oil : (Thermic oil)g water outlet temp. = 32° Cg water outlet temp. = 37° CCooling water flow rateMean Temperature DifferenceVolumetric flow rate of waterTube side flow areaNumber of tubes4 mm triangular pitch , N_p =2 , shell ID = 305mmTube side Reynold's numbersTube Side Prandtl's numbers	36.0812 kPa preheating of Palm Oil before to 160 1.05346 322.9197 °C 33912 kg/h 40.04 ° C 0.009475 m ³ /h 0.00632 m ² 64.85 = = 65 32171.3 4.866 6240.62 W/m ² ° C 0.0095312 m ²	$\begin{array}{c} 53.97 \text{ kPa} \\ \hline \textbf{ore Reaction (HE -1)} \\ \hline 7600 \text{ s} \\ \hline 1.0463 \\ \hline 321.605477 ^{\circ}\text{C} \\ \hline \end{array} \\ \hline 33877.73 \text{ kg/h} \\ \hline 40.04 ^{\circ}\text{C} \\ \hline 9.465 \times 10^{-3} \text{ m}^3/\text{h} \\ \hline 6.3102 \times 10^{-3} \text{ m}^2 \\ \hline 66 \\ \hline \end{array} \\ \hline \begin{array}{c} 32171.3 \\ \hline 4.867 \\ \hline 6340.7 \text{ W/m}^2 ^{\circ}\text{C} \\ \hline 9.5312 \times 10^{-3} \text{ m}^2 \end{array} \end{array}$
25 Param 26 27 28 Design BEM t Tube s Shell s Cooling 29 30 31 32 33 For 25. 34 35 36	Shell side pressure dropeters of Shell and Tube Heat Exchanger used forTime required for heating the palm oil from 50 K_2 ConstantTemperature of heating medium inlet, t_1 of cooler of oil cycle (HE – 2)ype fixed tube sheetide fluid : cooling wateride fluid : cooling wateride fluid oil : (Thermic oil)g water outlet temp. = 32° Cg water outlet temp. = 37° CCooling water flow rateMean Temperature DifferenceVolumetric flow rate of waterTube side flow areaNumber of tubes4 mm triangular pitch , N _p =2 , shell ID = 305 mmTube side Reynold's numbersTube Side Prandtl's numbersHeat Transfer Coefficient of Tube SideShell side flow areaShell side flow area	36.0812 kPa preheating of Palm Oil before to 160 1.05346 322.9197°C 33912 kg/h 40.04°C 0.009475 m ³ /h 0.00632 m ² 64.85 = = 65 32171.3 4.866 6240.62 W/m ² °C	$\begin{array}{c} 53.97 \text{ kPa} \\ \hline \textbf{53.97 kPa} \\ \hline \textbf{re Reaction (HE -1)} \\ \hline 7600 \text{ s} \\ \hline 1.0463 \\ \hline 321.605477 ^{\circ}\text{C} \\ \hline 321.605477 ^{\circ}\text{C} \\ \hline \end{array} \\ \hline \begin{array}{c} 33877.73 \text{ kg/h} \\ 40.04 ^{\circ}\text{ C} \\ \hline 9.465 \times 10^{-3} \text{ m}^3/\text{h} \\ \hline 6.3102 \times 10^{-3} \text{ m}^2 \\ \hline 66 \\ \hline \\ 32171.3 \\ \hline 4.867 \\ \hline 6340.7 \text{ W/m}^2 ^{\circ}\text{C} \\ \hline 9.5312 \times 10^{-3} \text{ m}^2 \\ \hline 700.62 \text{ kg/m}^2\text{s} \\ \end{array}$
25 Param 26 27 28 Design BEM t Tube s Shell s Cooling Cooling 29 30 31 32 33 For 25. 34 35 36 37	Shell side pressure dropeters of Shell and Tube Heat Exchanger used forTime required for heating the palm oil from 50K2 ConstantTemperature of heating medium inlet, t_1 of cooler of oil cycle (HE – 2)ype fixed tube sheetide fluid : cooling wateride fluid oil : (Thermic oil)g water inlet temp. = 32° Cg water outlet temp. = 37° CCooling water flow rateMean Temperature DifferenceVolumetric flow rate of waterTube side flow areaNumber of tubes4 mm triangular pitch , $N_p=2$, shell ID = $305mm$ Tube Side Reynold's numbersTube Side Prandtl's numbersHeat Transfer Coefficient of Tube SideShell side flow area	36.0812 kPa preheating of Palm Oil before to 160 1.05346 322.9197 °C 33912 kg/h 40.04 ° C 0.009475 m ³ /h 0.00632 m ² 64.85 = = 65 32171.3 4.866 6240.62 W/m ² ° C 0.0095312 m ²	$\begin{array}{c} 53.97 \text{ kPa} \\ \hline \textbf{ore Reaction (HE -1)} \\ \hline 7600 \text{ s} \\ \hline 1.0463 \\ \hline 321.605477 ^{\circ}\text{C} \\ \hline \end{array} \\ \hline 33877.73 \text{ kg/h} \\ \hline 40.04 ^{\circ}\text{C} \\ \hline 9.465 \times 10^{-3} \text{ m}^3/\text{h} \\ \hline 6.3102 \times 10^{-3} \text{ m}^2 \\ \hline 66 \\ \hline \end{array} \\ \hline \begin{array}{c} 32171.3 \\ \hline 4.867 \\ \hline 6340.7 \text{ W/m}^2 ^{\circ}\text{C} \\ \hline 9.5312 \times 10^{-3} \text{ m}^2 \end{array} \end{array}$
25 Param 26 27 28 Design BEM t Tube s Shell s Cooling Cooling 29 30 31 32 33 For 25. 34 35 36 37 38	Shell side pressure dropeters of Shell and Tube Heat Exchanger used forTime required for heating the palm oil from 50 K_2 ConstantTemperature of heating medium inlet, t_1 of cooler of oil cycle (HE – 2)ype fixed tube sheetide fluid : cooling wateride fluid : cooling wateride fluid oil : (Thermic oil)g water outlet temp. = 32° Cg water outlet temp. = 37° CCooling water flow rateMean Temperature DifferenceVolumetric flow rate of waterTube side flow areaNumber of tubes4 mm triangular pitch , N _p =2 , shell ID = 305 mmTube side Reynold's numbersTube Side Prandtl's numbersHeat Transfer Coefficient of Tube SideShell side flow areaShell side flow area	36.0812 kPa preheating of Palm Oil before to 160 1.05346 322.9197 °C 33912 kg/h 40.04 ° C 0.009475 m ³ /h 0.00632 m ² 64.85 = = 65 32171.3 4.866 6240.62 W/m ² °C 0.0095312 m ² 701.3775 kg/m ² s	$\begin{array}{c} 53.97 \text{ kPa} \\ \hline \textbf{53.97 kPa} \\ \hline \textbf{re Reaction (HE -1)} \\ \hline 7600 \text{ s} \\ \hline 1.0463 \\ \hline 321.605477 ^{\circ}\text{C} \\ \hline \end{array} \\ \hline \begin{array}{c} 33877.73 \text{ kg/h} \\ 40.04^{\circ}\text{C} \\ \hline 9.465 \times 10^{-3} \text{ m}^3/\text{h} \\ \hline 6.3102 \times 10^{-3} \text{ m}^2 \\ \hline 66 \\ \hline \\ \hline \end{array} \\ \hline \begin{array}{c} 32171.3 \\ \hline 4.867 \\ \hline \hline 6340.7 \text{ W/m}^2 ^{\circ}\text{C} \\ \hline 9.5312 \times 10^{-3} \text{ m}^2 \\ \hline 700.62 \text{ kg/m}^2\text{s} \\ \hline \end{array} $
25 Param 26 27 28 Design BEM t Tube s Shell s Cooling Cooling 29 30 31 32 33 For 25. 34 35 36 37 38 39	Shell side pressure dropeters of Shell and Tube Heat Exchanger used forTime required for heating the palm oil from 50 K_2 ConstantTemperature of heating medium inlet, t_1 of cooler of oil cycle (HE – 2)ype fixed tube sheetide fluid : cooling wateride fluid oil : (Thermic oil)g water outlet temp. = 32° Cg water outlet temp. = 37° CCooling water flow rateMean Temperature DifferenceVolumetric flow rate of waterTube side flow areaNumber of tubes4 mm triangular pitch , N_p =2 , shell ID = 305mmTube side Reynold's numbersTube Side Prandtl's numbersHeat Transfer Coefficient of Tube SideShell side flow areaShell side mass velocityShell side mass velocity	36.0812 kPa preheating of Palm Oil before to 160 1.05346 322.9197°C 33912 kg/h 40.04°C 0.009475 m³/h 0.00632 m² 64.85 = = 65 32171.3 4.866 6240.62 W/m² °C 0.0095312 m² 701.3775 kg/m²s 0.98786 m/s	$\begin{array}{c} 53.97 \text{ kPa} \\ \hline \textbf{re Reaction (HE -1)} \\ 7600 \text{ s} \\ \hline 1.0463 \\ 321.605477 ^{\circ}\text{C} \\ \hline \end{array} \\ \hline \begin{array}{c} 33877.73 \text{ kg/h} \\ 40.04^{\circ}\text{C} \\ \hline 9.465 \times 10^{-3} \text{ m}^3/\text{h} \\ \hline 6.3102 \times 10^{-3} \text{ m}^2 \\ \hline 66 \\ \hline \\ 32171.3 \\ \hline 4.867 \\ \hline 6340.7 \text{ W/m}^2 ^{\circ}\text{C} \\ \hline 9.5312 \times 10^{-3} \text{ m}^2 \\ \hline 700.62 \text{ kg/m}^2\text{s} \\ \hline 0.9867 \text{ m/s} \\ \hline \end{array}$
25 Param 26 27 28 Design BEM t Tube s Shell s Cooling Cooling 29 30 31 32 33 For 25. 34 35 36 37 38 39 40	Shell side pressure dropeters of Shell and Tube Heat Exchanger used forTime required for heating the palm oil from 50 K_2 ConstantTemperature of heating medium inlet, t_1 of cooler of oil cycle (HE – 2)ype fixed tube sheetide fluid : cooling wateride fluid oil : (Thermic oil)g water outlet temp. = 32° Cg water outlet temp. = 37° CCooling water flow rateMean Temperature DifferenceVolumetric flow rate of waterTube side flow areaNumber of tubes4 mm triangular pitch , $N_p=2$, shell ID = 305 mmTube side Reynold's numbersTube Side Prandtl's numbersHeat Transfer Coefficient of Tube SideShell side flow areaShell side mass velocityShell side mass velocityShell side equivalent diameter	36.0812 kPa preheating of Palm Oil before to 160 1.05346 322.9197°C 33912 kg/h 40.04°C 0.009475 m ³ /h 0.00632 m ² 64.85 = = 65 32171.3 4.866 6240.62 W/m ² °C 0.0095312 m ² 701.3775 kg/m ² s 0.98786 m/s 18.25 mm 25596.28 14.75	$\begin{array}{c} 53.97 \text{ kPa} \\ \hline \textbf{53.97 kPa} \\ \hline \textbf{7600 s} \\ \hline 1.0463 \\ \hline 321.605477 ^{\circ}\text{C} \\ \hline \textbf{321.605477 }^{\circ}\text{C} \\ \hline \textbf{9.465 } \times 10^{-3} \text{ m}^{3}\text{/h} \\ \hline \textbf{6.3102 } \times 10^{-3} \text{ m}^{2} \\ \hline \textbf{66} \\ \hline \textbf{32171.3} \\ \hline \textbf{4.867} \\ \hline \textbf{6340.7 W/m^{2} }^{\circ}\text{C} \\ \hline \textbf{9.5312 } \times 10^{-3} \text{ m}^{2} \\ \hline \textbf{700.62 kg/m^{2}s} \\ \hline \textbf{0.9867 m/s} \\ \hline \textbf{18.25 mm} \\ \hline \end{array}$
25 Param 26 27 28 Design BEM t Tube s Shell s Cooling Cooling 29 30 31 32 33 For 25. 34 35 36 37 38 39 40 41	Shell side pressure dropeters of Shell and Tube Heat Exchanger used forTime required for heating the palm oil from 50 K_2 ConstantTemperature of heating medium inlet, t_1 of cooler of oil cycle (HE – 2)ype fixed tube sheetide fluid : cooling wateride fluid oil : (Thermic oil)g water outlet temp. = 32° Cg water outlet temp. = 37° CCooling water flow rateMean Temperature DifferenceVolumetric flow rate of waterTube side flow areaNumber of tubes4 mm triangular pitch , N_p=2 , shell ID = 305mmTube side Reynold's numbersTube Side Prandtl's numbersHeat Transfer Coefficient of Tube SideShell side flow areaShell side mass velocityShell side equivalent diameterShell side Reynolds numbers	36.0812 kPa preheating of Palm Oil before to 160 1.05346 322.9197°C 33912 kg/h 40.04°C 0.009475 m³/h 0.00632 m² 64.85 = = 65 32171.3 4.866 6240.62 W/m² °C 0.0095312 m² 701.3775 kg/m²s 0.98786 m/s 18.25 mm 25596.28 14.75 1274.4011 W/ m² °C	$\begin{array}{c} 53.97 \text{ kPa} \\ \hline \textbf{53.97 kPa} \\ \hline \textbf{ore Reaction (HE -1)} \\ \hline 7600 \text{ s} \\ \hline 1.0463 \\ \hline 321.605477 ^{\circ}\text{C} \\ \hline \end{array} \\ \hline 321.605477 ^{\circ}\text{C} \\ \hline \end{array} \\ \hline \begin{array}{c} 33877.73 \text{ kg/h} \\ \hline 40.04 ^{\circ}\text{C} \\ \hline 9.465 \times 10^{-3} \text{ m}^3/\text{h} \\ \hline 6.3102 \times 10^{-3} \text{ m}^2 \\ \hline 66 \\ \hline \end{array} \\ \hline \begin{array}{c} 32171.3 \\ \hline 4.867 \\ \hline 6340.7 \text{ W/m}^2 ^{\circ}\text{C} \\ \hline 9.5312 \times 10^{-3} \text{ m}^2 \\ \hline 700.62 \text{ kg/m}^2\text{s} \\ \hline 0.9867 \text{ m/s} \\ \hline 18.25 \text{ mm} \\ \hline 25572.63 \\ \hline \end{array}$
25 Param 26 27 28 Design BEM t Tube s Shell s Cooling 29 30 31 32 33 For 25. 34 35 36 37 38 39 40 41 42	Shell side pressure dropeters of Shell and Tube Heat Exchanger used forTime required for heating the palm oil from 50 K_2 ConstantTemperature of heating medium inlet, t_1 of cooler of oil cycle (HE – 2)yype fixed tube sheetide fluid : cooling wateride fluid : cooling wateride fluid oil : (Thermic oil)g water inlet temp. = 32° Cg water outlet temp. = 37° CCooling water flow rateMean Temperature DifferenceVolumetric flow rate of waterTube side flow areaNumber of tubes4 mm triangular pitch , N_p = 2 , shell ID = 305mmTube side Reynold's numbersTube Side Prandtl's numbersHeat Transfer Coefficient of Tube SideShell side flow areaShell side mass velocityShell side velocityShell side Reynolds numbers	36.0812 kPa preheating of Palm Oil before to 160 1.05346 322.9197°C 33912 kg/h 40.04°C 0.009475 m ³ /h 0.00632 m ² 64.85 = = 65 32171.3 4.866 6240.62 W/m ² °C 0.0095312 m ² 701.3775 kg/m ² s 0.98786 m/s 18.25 mm 25596.28 14.75	$\begin{array}{c} 53.97 \text{ kPa} \\ \hline \textbf{ore Reaction (HE -1)} \\ 7600 \text{ s} \\ 1.0463 \\ 321.605477 ^{\circ}\text{C} \\ \hline \textbf{321.605477 }^{\circ}\text{C} \\ \hline \textbf{321.605477 }^{\circ}\text{C} \\ \hline \textbf{321.605477 }^{\circ}\text{C} \\ \hline \textbf{321.605477 }^{\circ}\text{C} \\ \hline \textbf{9.465 \times 10^{-3} m^3/h} \\ \hline \textbf{6.3102 } \times 10^{-3} m^2 \\ \hline \textbf{66} \\ \hline \textbf{32171.3} \\ \hline \textbf{4.867} \\ \hline \textbf{6340.7 W/m^2 }^{\circ}\text{C} \\ \hline \textbf{9.5312 } \times 10^{-3} m^2 \\ \hline \textbf{700.62 kg/m^2s} \\ \hline \textbf{0.9867 m/s} \\ \hline \textbf{18.25 mm} \\ \hline \textbf{25572.63} \\ \hline \end{array}$

46	Tube length	1.845 = 2m	1.82560 m
47	Area Available	7.77621 m^2	7.89984 m ²
48	% excess heat transfer area	8.394%	9.5598 %
49	Tube side pressure drop	13547 kPa	13547 kPa
50	Shell side pressure drop	30.388 kPa	31.791 kPa

4. CONCLUSION

The results show that jet loop reactor can be well used for hydrogenation of Palm oil and can replace conventional CSTRs. The Program made was first tested with data available for hydrogenation of Soybean oil given in text and later ran for Palm Oil. The results obtained for Palm Oil are well within the acceptable limits and can be applied for scale up plants.

5. REFERENCES

- [1]. R. J. Malone, Herzog-Hart Corp., (1980). "Loop reactor technology improves catalytic hydrogenation", Boston, Mass.
- [2]. Ogawa. S, H., Yamaguchi S., Tone And T. Otake (1983). "Gas liquid mass transfer in the jet reactor with liquid jet ejector", J. H. Chemical Engineering, Japan.
- [3]. N. N. Dutta And K. V. Raghavan, Chemical Engineering Division, Regional Research Laboratory, 1986, Jorhat-785 006 (India)
- [4]. Dirix and van der wiele, (1990). "*Mass transfer in jet loop reactor*", Akzo research laboratories Arnhem corporation research, process technology department, Netherlands.
- [5]. M. Velan, T. K. Ramanuj, (1992), "Gas liquid mass transfer in a down flow jet loop reactor", Department of chemical Engineering, Indian Institute of Technology, Madras, India.
- [6]. Ch. Viala, B. S. Poncina, G. Wilda, N. Midouxa, "Experimental and theoretical analysis of the hydrodynamics in the riser of an external loop airlift reactor", A Laboratoire des Sciences du Genie Chimique, CNRS-ENSIC-INPL 1, rue Grandville, BP 451, F-54001 Nancy Cedex, France
- [7]. W. Ludwig A, R. G. Szafran, A. Kmiec, J. Dziak, "Measurements of flow hydrodynamics in a jet-loop reactor using PIV method", Wroclaw University of Technology, Faculty of Chemistry, Department of Chemical Engg., Wybrzeze Wyspianskiego St. 27,50-370 Wroclaw, Poland
- [8]. Thakore S. B., Bhatt. B. I., "Introduction To Process Engineering And Design", 2nd Ed., Tata McGraw Hill, 2010
- [9]. Pangarkar, Vishwas, Govind, "Design Of Multiphase Reactors"
- [10]. Bhavika J. Parmar, Prof. S. M. Dutta, Prof. S. B. Thakore, "Process Design for Hydrogenation of Palm Oil Using a Jet Loop Reactor", IJARIIE, Vol. 2, Issue. 1, 2016

6. APPENDIX- 1 (OUTPUT WINDOWS FOR SOYBEAN OIL

Scilab Console		
ile Edit Preferences Control Applications ?		<u></u>
? 🕒 🔏 🕞 🛄 🖿 🗛 📇 🚍 🛤 🛞		
cilab Console		
scilab-5.3.3	•	
Consortium Scilab (DIGITEO)		
Copyright (c) 1989-2011 (INRIA)		
Copyright (c) 1989-2007 (ENPC)		
tartup execution:		
loading initial environment		
->exec('D:\scilab\final1.sce', -1)		
Average heat of reaction $(Kj/(Kg IV reduction)) = 7.1$		
V of oil inlet = 128		
V of oil outlet = 68		
Ly of reactant = 10000		
apput the mass reaction time (Hour) = 5		
Circulation rate of oil (Kg/h) = 58575		
neutration rate of on $(Rg/n) = 38375$ nlet temprature of thermic fluid HE1 (C) = 70		
Dutlet temprature of thermic fluid HE1 (C) = 80		
Reduced tem of oil 1 (C) = 159.318		
Reduced tem of oil 2 (C) = 165.518		
Temprature of cold fluid at the begining of heating period (C) = 30	
Temprature of cold fluid at the original of heating period (C) =		
Cooling water inlet temprature $(C) = 32$		
Cooling water outlet temprature (C) $= 37$		
e	III.	
📀 🥖 🚞 🖸 🙆 💽	n. 44	12:22 PN
💓 🖉 🚍 🔍 💙 🔛 🖳	- 陵 詳	······································
F	igure 2: Output Window – 1 for Soybean Oil	
F	igure 2: Output Window – <mark>1</mark> for Soybean Oil	
F	igure 2: Output Window – 1 for Soybean Oil	
F	igure 2: Output Window – 1 for Soybean Oil	
	igure 2: Output Window – 1 for Soybean Oil	
Scilab Console	igure 2: Output Window – 1 for Soybean Oil	
Scilab Console	igure 2: Output Window – 1 for Soybean Oil	
Scilab Console	igure 2: Output Window – 1 for Soybean Oil	
Scilab Console	igure 2: Output Window – 1 for Soybean Oil	
Scilab Console ile Edit Preferences Control Applications ? P S C Console Console Console Cooling water outlet temprature (C) = 37	igure 2: Output Window – 1 for Soybean Oil	
Scilab Console ile Edit Preferences Control Applications ? 2 È ↓ ↓ ↓ ↓ ↓ ▲ ↓ ■ ↓ ■ ↓ ● ●	igure 2: Output Window – 1 for Soybean Oil	
Scilab Console ile Edit. Preferences Control Applications ? 2 ■ ★ □ ■ ■ ■ ■ ■ ■ ● ● Scalab Console ocoling water outlet temprature (C) = 3 / "ube out side dia of HE1 (mm) = 25.4	igure 2: Output Window – 1 for Soybean Oil	
 Scilab Console ile Edit Preferences Control Applications ? iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	igure 2: Output Window – 1 for Soybean Oil	
Scilab Console lie Edit. Preferences Control Applications ? 2 ■ ★ □ ■ ▲ ■ ■ ■ ● ● ● cooling water outlet temprature (C) = 3 / 'ube out side dia of HE1 (mm) = 25.4 'ube inside dia of HE1 (mm) = 22.098 Dut side dia of tube HE2 (mm) = 19.05 nside dia of tube HE2 (mm) = 15.748 'ube side velocity (m/s) = 1.5	igure 2: Output Window – 1 for Soybean Oil	
Scilab Console lie Edit Preferences Control Applications ? 2 ■ 2 ■ 2 ■ 2 ■ 2 ■ 2 ■ 2 ■ 2 ■ 2 ■ 2 ■	igure 2: Output Window – 1 for Soybean Oil	
Scilab Console lie Edit Preferences Control Applications ? Control Console Control Console	igure 2: Output Window – 1 for Soybean Oil	
Scileb Console lie Edit Preferences Control Applications ? Control Control	igure 2: Output Window – 1 for Soybean Oil	
Solab Console lie Edit Preferences Control Applications ? Preferences Control Applications ? Preferences Cooling water outlet temprature (C) = 3 / tube out side dia of HE1 (mm) = 25.4 tube inside dia of HE1 (mm) = 22.098 tut side dia of tube HE2 (mm) = 19.05 mide dia of tube HE2 (mm) = 15.748 tube side velocity (m/s) = 1.5 bensity of oil (Kg/L) = 825 precific heat of oil (Kg/Kg,C) = 2.56 fiscocity of oil (Pa.s) = 0.002	igure 2: Output Window – 1 for Soybean Oil	
E Scilab Console lie Edit Preferences Control Applications ? Control Console Control Control Contr	igure 2: Output Window – 1 for Soybean Oil	
Scilab Console le Edit Preferences Control Applications ? Control Applications ? Control Console Control Control Control Control Control Console Control Control Control Control Control Control Control Control Control Control Control Control Control	igure 2: Output Window – 1 for Soybean Oil	
Scilab Console le Edit Preferences Control Applications ? Control Console Control Control Console Control Control Console Control Control Console Control Control Console Control Console Control Console Control Console	igure 2: Output Window – 1 for Soybean Oil	
Scilab Console le Edit Preferences Control Applications ? Control Applications ? Control Control Applications ? Control Control Control Applications ? Control Control Control Applications ? Control Control C	igure 2: Output Window – 1 for Soybean Oil	
Scilab Console le Edit Preferences Control Applications ? Control Applications ? Control Console Control Console Control Console Control Console Control Console Control Console Control Console Control Console Control Console	igure 2: Output Window – 1 for Soybean Oil	
Scilab Console le Edit Preferences Control Applications ? Control Console cooling water outlet temprature $(C) = 57$ ube out side dia of HE1 (mm) = 25.4 ube inside dia of HE1 (mm) = 25.4 ube inside dia of HE1 (mm) = 19.05 uside dia of tube HE2 (mm) = 19.05 uside dia of tube HE2 (mm) = 15.748 ube side velocity (m/s) = 1.5 ensity of oil (Kg/L) = 825 pecific heat of oil (Kj/Kg.C) = 2.56 iscocity of oil (Kg/L) = 825 pecific heat of oil (Kg/L) = 710 iscocity of thermic fluid (Kg/L) = 710 iscocity of thermic fluid (Kg/L) = 2.95 hermal conductivity of thermic fluid (W/m.C) = 0.1 ensity of twater at 34.5 C (Kg/L) = 994.202	igure 2: Output Window – 1 for Soybean Oil	
Solub Console Le Edit Preferences Control Applications ? Le Idit Preferences Control Applications ? Le Idit Console Le Idit Console	igure 2: Output Window – 1 for Soybean Oil	
I Scilab Console lie Edit Preferences Control Applications ? Console Console Cooling water outlet temprature (C) = 37 Tube out side dia of HE1 (mm) = 25.4 Ube inside dia of HE1 (mm) = 22.098 Tut side dia of tube HE2 (mm) = 19.05 Inside dia of tube HE2 (mm) = 15.748 Tube side velocity (m/s) = 1.5 Temsity of oil (Kg/L) = 825 pecific heat of oil (Kj/Kg.C) = 2.56 Sococity of oil (Pa.s) = 0.002 thermal conductivity of oil W/(m.c) = 0.16 Temsity of thermic fluid (Kg/L) = 710 Sococity of thermic fluid (Kg/L) = 710 Sococity of thermic fluid (Kg/L) = 710 Sococity of thermic fluid (Kg/L) = 9.0005 pecific heat of thermic fluid (Kg/L) = 9.95 thermal conductivity of thermic fluid (W/m.C) = 0.1 Density of water (As.5 C (Kg/L) = 994.202 Sococity of water (Pa.s) = 0.00073 Thermal conductivity of water (W/m.C) = 0.628	igure 2: Output Window – 1 for Soybean Oil	
Soliab Console lie Edit Preferences Control Applications ? Control Console Control Console Control Console Control Control Console Control Control Console Control Console Conso	igure 2: Output Window – 1 for Soybean Oil	
Scieb Console lie Edit Preferences Control Applications ? Control Console Control Control	igure 2: Output Window – 1 for Soybean Oil	
I Scilab Console lie Edit Preferences Control Applications ? Console Console Cooling water outlet temprature (C) = 37 Tube out side dia of HE1 (mm) = 25.4 Uube inside dia of HE1 (mm) = 22.098 Pout side dia of tube HE2 (mm) = 19.05 Isside dia of tube HE2 (mm) = 15.748 Tube side velocity (m/s) = 1.5 Presity of oil (Kg/L) = 825 precific heat of oil (Kj/Kg.C) = 2.56 Tiscocity of oil (Pa.s) = 0.002 Thermal conductivity of oil W/(m.c) = 0.16 Presity of thermic fluid (Kg/L) = 710 Tiscocity of thermic fluid (Kg/L) = 9.15 Thermal conductivity of thermic fluid (W/m.C) = 0.16 Presity of thermic fluid (Kj/Kg.c) = 2.95 Thermal conductivity of thermic fluid (W/m.C) = 0.1 Presity of water (Pa.s) = 0.00073 Thermal conductivity of water (W/C.m^2) = 5000 al side fouling coefficient (W/C.m^2) = 5000 al side fouling coefficient (W/C.m^2) = 3000 Temprature correction factor = 1 Tum of tube side passes HE1 = 1	igure 2: Output Window – 1 for Soybean Oil	
Soliab Console lie Edit Preferences Control Applications ? Concords Conc	igure 2: Output Window – 1 for Soybean Oil	
Sclub Console lie Edit Preferences Control Applications ? Colored Scheme cooling water outlet temprature $(C) = 57$ ube out side dia of HE1 (mm) = 25.4 ube inside dia of HE1 (mm) = 25.4 ube inside dia of HE1 (mm) = 25.4 ube side velocity (m/s) = 1.5 side dia of tube HE2 (mm) = 19.05 aside dia of tube HE2 (mm) = 15.748 ube side velocity (m/s) = 1.5 perific heat of oil (Kg/L) = 825 pecific heat of oil (Kg/L) = 825 pecific heat of oil (Kg/L) = 710 'iscocity of differmic fluid (Kg/L) = 710 'iscocity of thermic fluid (Kg/L) = 710 'iscocity of thermic fluid (Kg/L) = 94.202 iscocity of water (Pa.s) = 0.00073 'hermal conductivity of water (W/m.C) = 0.128 hermic fluid side fouling coefficient (W/C.m^2) = 5000 il side fouling coefficient (W/C.m^2) = 3000 'emprature correction factor = 1 Jum of tube side passes HE2 = 2	igure 2: Output Window – 1 for Soybean Oil	
Sideb Console lie Edit Preferences Control Applications ? Control Console Control Contr	igure 2: Output Window – 1 for Soybean Oil	
2 Sclieb Console lie Edit Preferences Control Applications ? 2 a b b b b c c c c c c c c c c	igure 2: Output Window – 1 for Soybean Oil	
Scilab Console ile Edit Preferences Control Applications ? 2 ■ 2 ■ 2 ■ 2 ■ 2 ■ 2 ■ 2 ■ 2 ■ 2 ■ 2 ■	igure 2: Output Window – 1 for Soybean Oil	
2 Soliab Console lie Edit. Preferences. Control Applications ? 2 3 4 3 4 4 5 6 6 1 4 5 5 7 1 1 1 1 1 1 1 1 1 1	igure 2: Output Window – 1 for Soybean Oil	
Solub Console the Edit Preferences Control Applications ? Construct cooling water outlet temprature $(C) = 37$ tube out side dia of HE1 (mm) = 25.4 tube inside dia of HE1 (mm) = 25.4 tube inside dia of HE1 (mm) = 25.4 tube side of tube HE2 (mm) = 19.05 tube out side dia of tube HE2 (mm) = 19.05 tube out side dia of tube HE2 (mm) = 15.748 tube side velocity (m's) = 1.5 tensity of oil (Kg/L) = 825 pecific heat of oil (Kj/Kg.C) = 2.56 iscocity of oil (Pa.s) = 0.002 hermal conductivity of oil W/(m.c) = 0.16 tensity of thermic fluid (Kg/L) = 710 iscocity of thermic fluid (Kg/L) = 910 iscocity of water at 34.5 C (Kg/L) = 994.202 iscocity of water (Pa.s) = 0.00073 hermal conductivity of water (W/m.C) = 0.1 tensity of water (Pa.s) = 0.00073 hermal conductivity of water (W/m.C) = 0.628 hermicfluid side fouling coefficient (W/C.m^2) = 3000 il side fouling coefficient (W/C.m^2) = 3000 imprature correction factor = 1 funn of tube side passes HE1 = 1 fumber of tube side passes HE1 = 2 iscocity correction factor = 1 riangular pitch (mm) = 31.75 affle spacing (m) = 0.15 hell inside diameter (mm) = 254	igure 2: Output Window – 1 for Soybean Oil	
1 Scieb Console the Edit Preferences Control Applications ? 2 3 4 3 4 4 4 5 6 6 4 4 5 6 7 4 4 5 7 5 7 5 7 5 4 5 7 7 1 1 1 1 1 1 1 1 1 1		
Solub Console te táit Preferences Control Applications ? Control Console Control Control Control Applications ? Control Control Contrection Cont		

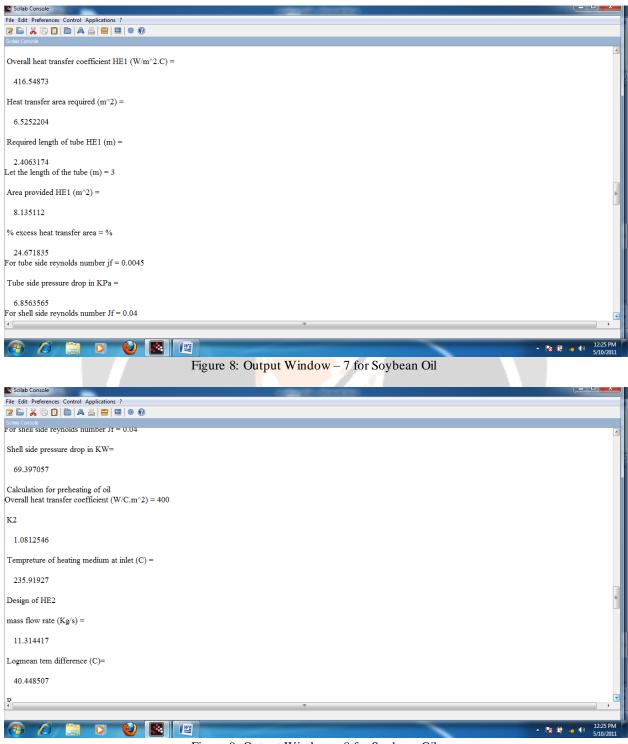
Scilab Console File Edit Preferences Control Applications ?	
Schell Conside Triangular pitch of HE2 (mm) = 25.4 Shell inside dia HE2 (mm)= 305 Bspacing HE2 (m) = 0.125 Thermal conductivity of tube material HE1(W/C.m^2) = 16.26 Specific heat of cold fluid(water) (J/Kg.C)= 2950 Specific heat of hot fluid (J/Kg.C) = 2560 Time required heating of oil (s) = 7200 Thermal conductivity of tube material mild steel HE2 =50 specific heat of cooling medium(water)(Kj/Kg.C) = 4186.8	
Diamter of the reactor (m) =	
2.6449142	
Height of the liquid inside the jet reactoer (m) =	
3.9673713	
Height of jet reactor (m)=	
5.2898283	
Øc =	
852000.	
Øc in kw =	Z •
Figure 4: Output Window – 3 for Soybean C	
Øc in kw =	4
236.856	
Circulation rate of oil in kg/s=	
16.270833	1
LMTD	9
87.14117	
Logmean temprature disfference (C) =	
87.14117	
Tube side mass flow rate of fluid $(Kg/m^2*s) =$	
8.0290169	
Tube side mass velocity $(m^2/s) =$	
1237.5	
Tube side flow area $(m^2) =$	Ţ
n n121401 m	
😗 🖉 🚞 🖸 🕹 💽 🖉	▲ 隆 🛱 🛹 🕸 12:23 PM 5/10/2011

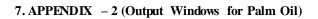
Figure 5: Output Window – 4 for Soybean Oil

www.ijariie.com

Scilab Console	
File Laft Preferences Control Applications ? Image: Imag	
State conside Tube side flow area (m^2) =	
0.0131481	
Number of tube	
34.286492 Let the number of tube=34	
Tube side reynolds number=	
13673.137	
Tube side prandult number	
32.	
tube side heat transfer coefficient (W/C.m 2) =	
1063.8708	
Shell side flow area $(m^2) =$	
0.00762	
Shell side mass velocity(Kg/m^2.s) =	
Figure 6: Output Window – 5 for Soybean Oil	12:24 PM 5/10/2011
Scilab Console File Edit Preferences Control Applications ?	
2 日 2 日 2 日 2 2 2 2 2	
Shell side mass velocity(Kg/m^2.s) =	~
1053.6768	
Shell side velocity $(m^2/s) =$	
1.4840518	
Shell side equivalent diameter (m) =	
18.31467	
Shell side reynolds numbers =	=
38595.484	
Shell side pradult number HE1 =	
14.75	
ho	
1591.4751	
Overall heat transfer coefficient HE1 (W/m^2.C) =	
<u>/16.54873</u> //	
🕞 🧀 🚞 🖸 😂 💽 / 🖉	● 12:24 PM 5/10/2011

Figure 7: Output Window – 6 for Soybean Oil




Figure 9: Output Window – 8 for Soybean Oil

Scilab Console	and the second s	
File Edit Preferences Control Applications ?		
Scilab Console		A
R		
2.		
S		
0.1041667		
from the value of R and S Temprature correction factor = 0.99		
Logmeanf temprature difference(C)=		
40.044022		
volumatric flow rate of water $(m^3/s) =$		
0.0113804		E
tube side flow area $(m^2) =$		-
0.0075869		
number of tube HE2 =		
77.942765		
		12:26 PM
Scilab Console File Edit Preferences Control Applications ? 27 🚡 🕌 💦 😱 🗋 📾 🗛 🚍 🚍 🚳 🔞	Figure 10: Output Window – 9 for Soybean Oil	
Scilab Console Let the number of tube =78		
HE2 tube side reynolds number =		
32171.287		
tube side prandult number =		
4.8668217		
hiHE2=		
6240.6211		
shell side flow area HE2 (m^2) =		
0.0095312		
shell side mass velocity HE2 (Kg/m^2.s)=		
842.38866		
842.38866 shell side velocity HE2 (m^2/s)=		=
shell side velocity HE2 (m^2/s)= 1.1864629 shell side equivalent dia HE2 (m^2) =		
shell side velocity HE2 (m^2/s)= 1.1864629	m	■ ・ N 前 → 4) 12:26 PM ・ N 前 → 4) 57/0/2011

Figure 11: Output Window – 10 for Soybean Oil

Scilab Console File Edit Preferences Control Applications ?	
shell side prandlt number HE2 =	
14.75	
heat transfer coefficient HE2 =	
1409.4981	
overall heat transfer coefficient of HE2 =	
723.84589	
heat transfer area required HE2 =	
8.1714774	
Tube length required HE2 =	
1.7513839 length of tube =2	
Heat transfer area privided HE2 =	
9.331452	E
%Excess heat transfer area HE2 =	
۲ (۱۱) ۲ (۲) ۲ (۲) ۲ (۲) ۲ (۲) ۲ (۲) ۲ (۲) ۲ (۲) ۲ (۲) ۲ (۲) ۲ (۲) ۲ (۲) ۲ (۲) ۲ (۲)	
Figure 12: Output Window – 11 for Soybean Oil	12:26 PM
Scilab Console	
File Edit Preferences Control Applications ?	
8.1714774	
Tube length required HE2 =	9
1.7513839 length of tube =2	
Heat transfer area privided HE2 =	
9.331452	
%Excess heat transfer area HE2 =	
14.195409 Enter the value of jF for tube side reynols number for HE2 =0.0035	
Tube side pressure drop HE2 (K.Pa)=	
13.547012 Enter the value of jF for shell side reynolds number Jf =0.041	
Shell side pressure drop HE2 (K.Pa)=	
43.836447	
->	
	· · ·
🚯 🖉 🗒 🔕 💽 📖	12:27 PM 5/10/2011

Figure 13: Output Window – 12 for Soybean Oil

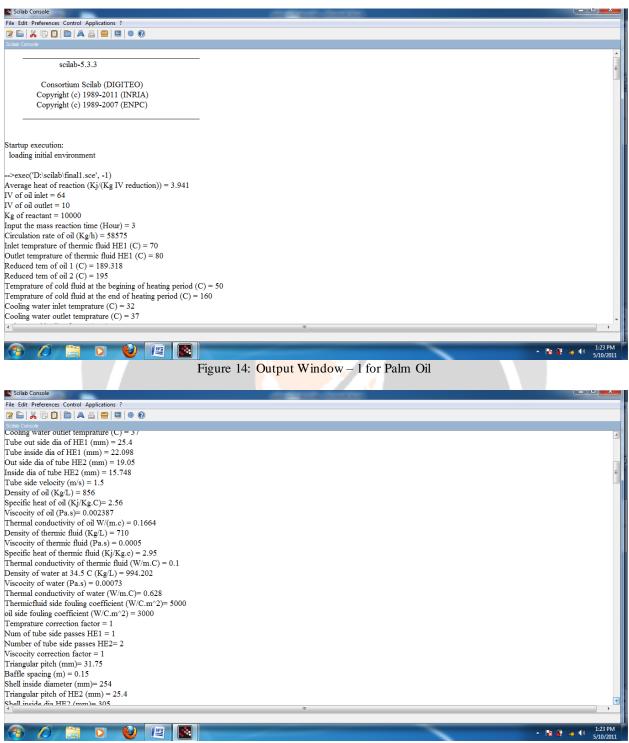


Figure 15: Output Window – 2 for Palm Oil

File Edit Preferences Control Applications ?	
Schel conside Shell inside dia HE2 (mm)= 305 Bspacing HE2 (m) = 0.125 Thermal conductivity of tube material HE1(W/C.m^2) = 16.26 Specific heat of cold fluid(water) (J/Kg.C) = 2950 Specific heat of hot fluid (J/Kg.C) = 2560 Time required heating of oil (s) = 7200 thermal conductivity of tube material mild steel HE2 =50 specific heat of cooling medium(water)(Kj/Kg.C) = 4186.8	-
Diamter of the reactor (m) =	
2.6449142	
Height of the liquid inside the jet reactor $(m) =$	
3.9673713	
Height of jet reactor (m)=	
5.2898283	
Øc =	
709380.	
Øc in kw =	
4 m	
Figure 16: Output Window – 3 for Palm Oil	
File Edit Preferences Control Applications ?	
ア 日 米 □ □ □ ▲ □ □ □ ■ ○ ● Scieb Console	
Image: Section Connecte Image: Im	
Image: Sector Conside Oc in kw = 197.20764	
Image: Second Concode Øc in kw = 197.20764 Circulation rate of oil in kg/s=	
Image: Setab Consult Øc in kw = 197.20764 Circulation rate of oil in kg/s= 16.270833	
Image: Second	
Image:	
Image:	
Image:	
Image:	
Image:	
Image: Control of the second secon	
Image: Construction Øc in kw = 197.20764 Circulation rate of oil in kg/s= 16.270833 LMTD 117.14574 Logmean temprature disfference (C) = 117.14574 Tube side mass flow rate of fluid (Kg/m^2*s) = 6.6850047 Tube side mass velocity (m^2/s) = 1284.	

Figure 17: Output Window – 4 for Palm Oil

Scilab Console File Edit Preferences Control Applications ?	
Shell side mass velocity(Kg/m^2.s) =	
877.29721	
Shell side velocity $(m^2/s) =$	
1.2356299	
Shell side equivalent diameter (m) =	
18.31467	
Shell side reynolds numbers =	=
32134.818	
Shell side pradult number HE1 =	
14.75	
ho	
1438.936	
Overall heat transfer coefficient HE1 (W/m^2.C) =	
e (ADD 44084	+
(a) 📋 D 🥹 📖 💽	1:25 PM
Figure 18: Output Window – 5 for Palm Oil	5/10/2011
Scilab Console	
File Edit Preferences Control Applications ? Image: Imag	
Solah Console	
Overall heat transfer coefficient HE1 (W/m^2.C) =	
400.44084	3
Heat transfer area required (m^2) = 4.203963	
Required length of tube HE1 (m) =	
1.5503031	
Let the length of the tube $(m) = 2$	
Area provided HE1 (m 2) =	
5.423408	
% excess heat transfer area = %	
29.007035 For tube side reynolds number jf = 0.0047	
Tube side pressure drop in KPa =	
Tube side pressure drop in KPa = 5.6846111 For shell side reynolds number Jf = 0.045	
5.6846111	•

Figure 19: Output Window – 6 for Palm Oil

File Edit Preferences Control Applications ? Image: Im		
Scilab Console		
R		
2.		
S		
0.1041667		
from the value of R and S Temprature correction factor = 0.99		
Logmeanf temprature difference(C)=		
40.044022		
volumatric flow rate of water $(m^3/s) =$		
0.0094754		E
tube side flow area $(m^2) =$		
0.0063169		
number of tube HE2 =		
64.895585	"	
📀 🖉 🚞 🖸 🔮 🖭		▲ 🙀 🛱 🐗 🕪 1:27 PM 5/10/2011
	Figure 20: Output Window – 7 for Palm Oil	
Scilab Console		
File Edit Preferences Control Applications ?		
Sciab Console 64.895585		
Let the number of tube = 65		<u>~</u>
HE2 tube side reynolds number =		
HE2 tube side reynolds number = 32171.287		
32171.287		
32171.287 tube side prandult number =		
32171.287 tube side prandult number = 4.8668217		
32171.287 tube side prandult number = 4.8668217 hiHE2=		
32171.287 tube side prandult number = 4.8668217 hiHE2= 6240.6211		
32171.287 tube side prandult number = 4.8668217 hiHE2= 6240.6211 shell side flow area HE2 (m^2) =		
32171.287 tube side prandult number = 4.8668217 hiHE2= 6240.6211 shell side flow area HE2 (m^2) = 0.0095312		
32171.287 tube side prandult number = 4.8668217 hiHE2= 6240.6211 shell side flow area HE2 (m^2) = 0.0095312 shell side mass velocity HE2 (Kg/m^2.s)=		
32171.287 tube side prandult number = 4.8668217 hiHE2= 6240.6211 shell side flow area HE2 (m^2) = 0.0095312 shell side mass velocity HE2 (Kg/m^2.s)= 701.37755		Ш
32171.287 tube side prandult number = 4.8668217 hiHE2= 6240.6211 shell side flow area HE2 (m^2) = 0.0095312 shell side mass velocity HE2 (Kg/m^2.s)= 701.37755 shell side velocity HE2 (m^2/s)=	11	

Figure 21: Output Window – 8 for Palm Oil

Scilab Console File Edit Preferences Control Applications ?	
Sciah Console	
shell side equivalent dia HE2 (m^2) =	
18.247148	5
shell side reynolds number HE2 =	
25596.28	
shell side prandlt number HE2 =	
14.75	
heat transfer coefficient HE2 =	
1274.4011	
overall heat transfer coefficient of HE2 =	
686.47398	
heat tranfsfer area required HE2 =	
7.1740097	E
Tube length required HE2 =	
۲	
Figure 22: Output Window – 9 for Palm Oil	5/15/E011
Scilab Console File Edit Preferences Control Applications ?	
7.1740097	
Tube length required HE2 =	B
1.8451173 length of tube =2	
Heat transfer area privided HE2 =	
7.77621	
%Excess heat transfer area HE2 =	
8.3941938 Enter the value of jF for tube side reynols number for HE2 =0.0035	
Tube side pressure drop HE2 (K.Pa)=	
13.547012 Enter the value of jF for shell side reynolds number Jf =0.041	
Shell side pressure drop HE2 (K.Pa)=	
30.388834	
> <	
	1:28 PM 5/10/2011

Figure 23: Output Window – 10 for Palm Oil