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ABSTRACT 
 

Leishmaniasis is a well known fatal disease that is caused by the protozoan species belonging to the genus 

Leishmania. The causative organism is transmitted through female sandflies. It is considered as a neglected 

tropical disease and targeted for the worldwide elimination by the World Health Organization. It is the major 

cause of significant morbidity and mortality in several countries of the world. Leishmania parasites cause a wide 

spectrum of human and animal infections ranging from the life threatening visceral disease to the disfiguring 

mucosal and cutaneous forms of the disease. Currently, the control of the disease totally relies on 

chemotherapy, as the vaccine is still under the process of development. Organic pentavalentantimonials [Sb 

(V)] have been the first-line drugs for the treatment of Leishmaniasis for the last seven decades. Alternatively, 

Amphotericin B, pentamidine and miltefosine can be used for the treatment of leishmaniasis. However, these 

drugs have serious limitations, such as high cost, toxicity and resistance has emerged as a major 

problem.Therefore, the development of new, effective antileishmanial drugs is an urgent need. The new drugs 

are required in an affordable price in order to control leishmaniasis worldwide. The aim of this article is to 

review the status of existing and emerging chemotherapy for the prevention and treatment of leishmaniasis and 

also focuses on the various mechanisms which may lead to antimony resistance in leishmaniasis. 
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1. Introduction 

Leishmaniasis is caused by different species of protozon parasite and belonging to the order kinetoplastida [1, 

2]. The Leishmania parasite is transmitted by an invertebrate sandfly vector, phlebotomus [3]. These organisms 

have a digenetic life cycle which includes extracellular, flagellated promastigote satage (molile form) that reside 

in the gut of the sand fly vector and obligated intracellular amastigote stage  (non-motile form), reside and 

multiply within the phagolysosome of reticulo endothelial  cells of mammalian macrophage [4]. Leishmania 

cause a wide spectrum of diseases (visceral (known as kalaazar), cutaneous and mucosal) in humans. The 

disease is prevalent in 98 countries with approximately 400 000 new cases per year [5]. 90% cases of Cutaneous 

Leishmaniasis occur in Afghanistan, Brazil, Iran, Peru, Saudi Arabia and Syria. 90% of Mucocutaneous 

Leishmaniasis (ML) occurs in Bolivia, Brazil and Peru. Visceral Leishmaniasis (VL) has been reported from 66 

countries and 90% of the VL cases occur in Bangladesh, Brazil, India, Napal and Sudan [6]. The primary 

treatment against Leishmaniasis includes pentavalent antimonials for more than seven decades. Presently, 78% 

of the recent clinical isolates from the hyperendemic zone of Bihar State still showed in vitro resistance to 

antimonials [7]. The recommended dose is 15-20 mg SbV/kg of body weight per day for 21-28 days through 

intramuscular or intravenous rout [8]. Low cost is their main advantage. However several disadvantages have 

decreased the use of antimonial, such as intramuscular administration, prolonged treatment and occasionally 
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life-threatening adverse effects like cardiac arrhythmias, increased hepatic transaminases, pancreatitis and 

pneumonitis [9, 10, 7]. 

Second-line drug, such as amphotericin B shows good efficacy. AmB is a polyene antifungal drug often used 

intravenously for systemic fungal infections [11, 12]. Therapeutic dose of AmB of 1mg/kg by endovenous 

alternate day for 30 days [13, 14] but recent study in India showed 96% cure rates with a dose of .75mg/kg/day 

for 15 days [15]. However, serious adverse reactions have been displayed by the treatment with amphotericin B, 

Its prolonged administration and the frequent side effects, such as fever and chills, nephrotoxicity and 

hypokalemia, occasional serious toxicities like myocarditis, which necessitate administration in hospital. Lipid 

formulations of amphotericin B improved highly the safety profile of this drug [15]. In poor countries even short 

courses of liposomal formulations are unaffordable and the selection of antileishmanial treatment turns more to 

a question of cost than of efficacy or toxicity [16, 12]. Paromomycin is an aminoglycoside with antileishmanial 

activity. This drug was associated with 94.6% cure rates, similar to amphotericin B [15, 17]. Many side effect 

associated with the paromamycin is the ototoxicity, as well as problems in liver function [18], pain at injection 

site and skin rashes, local pruritus. 

Miltefosine (hexadecylphosphocholine), originally developed as a neoplastic agent, is the first orally 

administered drug for VL and the latest to enter the market [18]. It can be used for both antimony-responding 

and non-responding patients. The limited use of miltefosine includes its teratogenic potential and it is 

contraindicated in pregnancy and women of child bearing age group, not observing contraception [19]. 

Miltefosine long half-life (approximately 150 hours) may facilitate the emergence of resistance. Preliminary 

data from a phase IV trail in India involving domiciliary treatment with miltefosine and weekly supervision 

suggests doubling of the relapse rate [20]. This provides warning that drug resistance may develop quickly. This 

demands an understanding of the molecular and biochemical mechanisms of clinical resistance, which has 

become a World Health Organization priority [21] (http://www.who.int/tdr/diseases/-leish/strategy.htm). 

 

1.1 Alternative therapy/Strategy 

The combination therapy has found new scope in the treatment of leishmaniasis. Paromomycin+sodium 

stibogluconate administered for 17 days was associated with higher cure and survival rates  compared to sodium 

stibogluconate monothearapy administered for 30 days  for VL [22], Oral allopurinol+endovenous pentostam 

for VL and miltefosin+amphotericinB+paromomycin for VL. The combination of verapamil+diperoxovanadate 

with sodium antimony gluconate reversed the in vitro antileishmanial resistance among clinical L. donovani 

isolates [23, 24]. Some studies are needed to investigate various other factor, such as the identification of 

effective well-tolerated and short treatment regimen, logistical aspects and the potential risk of developing 

resistance considering that compliance in field conditions can be low [25, 26].  

Sitamaquine is an orally active 8-aminoquinoline Analogue. Animal studies showed very encouraging results 

against VL, but clinical trials it did not shows high efficacy after treatment during 28 days [27]. 

2. New Drugs  

Currently, the development of both synthetic and natural drugs have relevant importance in the search of new 

therapeutic alternatives. 

2.1 Antileishmanial Synthetic Compounds 

The design of new drugs based in know and validation molecular targets in the parasite. The synthetic molecules 

can display a high toxicity and only a low of compounds have been evaluated in clinical studies (Table -1). 

2.2 Antileishmanial Natural Products 

The world health Organization (TDR/WHO) with the drug discovery research program has considered a priority 

the pharmacological investigation of plants [40]. In recent year these has been an intense search for 

antileishmanial compounds obtained from natural sources, which has led to the identification of several classes 

of active plant metabolites [41,42]. Advanced studies have been evaluated potential compounds isolated from 

natural source, which displayed antileishmanial activity (Table -2). 

 

   Table -1 Antileishmanial Synthetic Compounds 

S.No. Synthetic Compound Antileishmanial activity Year Ref. 
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1 Triazole SCH 56592 
Exhibition in vitro & in vivo activity against L. 

amazonensis and L. donovani. 
1999 [29] 

2 
9,9-Dimethylxanthene 

tricyclics 
Caused in vitro inhibition of amastigotes of L. donovani. 2000 [30] 

3 Azasterols 
Showed in vitro activity against promastigotes of L. 

donovani and axenic amastigotes of L. amazonensis. 
2003 [31] 

4 3-substituted quinolones 
Antileishmanial in vitro effects against L. chagasi 

promastigotes and amastigotes was observed. 
2005 [32] 

5 Edelfosine and Ilmofosine 
Demonstrated high in vitro activity against L. donovani 

promastigotes and amastigotes 
2005 [33] 

6 Nicotinamide 
in vitro inhibition of L. infantum promastigotes and 

amastigotes 
2005 [34] 

7 Perifosine new 
Significant in vitro activity against promastigote of L. 

braziliensis, L. amazonensis, L. major and L. infantum. 
2007 [35] 

8 N-acetyl-1-cysteine 
Showed in vivo activity against L. amazonesis in 

BALB/c mice 
2008 [36] 

9 3,5-disubstituted isoxazole 
In vitro activity against L. donovani promastigotes and 

amastigotes 
2011 [37] 

10 Tellurium compound RF07 Exhibited in vitro and in vivo activity against L. chagasi 2012 [38] 

11 

2,4-dihydroxyben-zophen-

one, 4-hydro-xybenzoph-

enone and 4,4´-dihydroxy 

benzophe-none 

In Vivo Evaluation of Leishmanicidal Activity  2017 [39] 

 

   Table-2 Antileishmanial Compounds obtained from natural sources 

S.No. Natural source Antileishmanial activity Year Ref. 

1 Piper aduncum 
Exhibited in vitro activity against promastigotes 

amastigotes of L. amazonensis. 
1999 [43] 

2 Holarrhena  floribunda 
Exhibited in vitro activity against promastigote & 

amastigotes of  L. donovani 
2000 [44] 

3 Peschiera australis 
Showed in vitro activity against promastigotes 

amastigotes of L. amazonensis 
2001 [45] 

4 Zanthoxylum chiloperone 
Demonstrated in vivo activity in BALB/c mice infection 

with L. amazonensis 
2002 [46] 

5 Maesa Balansae Caused in vitro and in vivo activity against L. Donovani. 2004 [47] 

6 Tanacetum parthenium 
Displayed activity against promastigotes & amastigotes 

of L. amazonensis. 
2005 [48] 

7 Ocimum gratissimum Showed in vitro activity against L. chagasi 2006 [49] 

8 Porophyllum ruderale 
Showed in vitro activity against promastigote L. 

amazonensis. 
2011 [50] 

9 Tridax procumbens 
Showed in vitro activity against promastigote L. 

Mexicana. 
2009 [51] 

10 Polyathialongifolia 
Show significant activity against promastigotes of L. 

chagasi, L. braziliensis, L. amazonensis. 
2010 [52] 
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11 Drimysbrasiliensis miers 
Showed in vitro activity against promastigote L. chagasi, 

L. braziliensis, L. amazonensis 
2011 [53] 

12 Valerianawallichii 
Shown activity against L. donovani promastigotes & 

amastigotes of L. major. 
2011 [54] 

13 Pentacaliadesiderabilis 
Show significant activity against promastigotes of L. 

chagasi, L.braziliensis and L.amazonensis. 
2012 [55] 

14 Acanthospermumhispidum Antileishmanial activity against L. mexicana 2011 [56] 

15 Lantanaukambensis 
Showed significant acxtivity against promastigotes of L. 

donovani. 
2012 [57] 

16 Ochrosia elliptica Labill 
Showed in vitro activity against promastigotes 

amastigotes of L. amazonensis Leishmania donovani 
2016 [58] 

 

3. Mechanism of Antimony Resistance 

At present the main focus is to study the possible mechanisms responsible for antimony resistance in 

Leishmania. The primary mechanism of resistance is the decrease in the active drug concentration within the 

parasite. The parasite may lower the drug level by a variety of mechanisms including reduction of drug 

concentration within the parasite, either by decreasing drug uptake or by increasing efflux/sequestration of the 

drug. Other potential resistance mechanisms include inhibition of drug activation and inactivation of active drug 

[59, 60, 61]. 

3.1. Mechanism of action and reduction of the metal 

According to this Mechanism, pentavalent antimony (SbV) behaves as a prodrug, which undergoes biological 

reduction to much more active/toxic trivalent form of antimony (Sb(III) that exhibit antileishmanial activity. 

However, the site of amastigote or macrophage and mechanism of reduction (enzymatic or nonenzymatic) 

remain controversial. Furthermore, the ability of Leishmania parasites to reduce Sb(V) to Sb(III) is stage-

specific. For instance, amastigotes but not promastogotes can reduce Sb(V) to Sb(III) [49]. This explains why 

amastigotes are more susceptible to Sb(V) but promastigotes are not [62,63,64,65,66]. Other studies have 

suggested that reduction of Sb(V) to Sb(III) may also take place within macrophages, but level of reduction of 

Sb(V) to Sb(III) in macrophage cannot be that significant since Sb(III) even at a dose of ~25 μg/ml can kill 50% 

of the THP1 macrophages [66,67]. Thus, conversion of Sb(V) to Sb(III) may occur at both sites, that is 

macrophage and parasite. It has been shown that an amount of Sb(V) may be converted to Sb(III) in human 

[64,65,66,67,68] and animals models [69,70]. The reduction of Sb(V) to Sb(III) requires an active participation 

of thiol compounds of both mammalian host and parasite origin [71,30,72]. Mammalian thiols, which play 

important role in this process, include glutathione (GSH), cysteine (Cys) and cysteinyl-glycine (Cys-Gly). The 

first one is the main thiol present in the cytosol, while the second and third are the predominant thiols within 

lysosomes of mammalian cells [73, 74]. The parasite-specific thiol compund, trypanothione (T(SH)2) is a 

complex consisting of glutathione and spermidine, that has been shown to be involved in reduction of Sb(V) to 

Sb(III) [75]. Compared to GSH, however, the initial rate of reduction of Sb(V) is much higher in the presence of 

Cys-Gly, Cys, and T(SH)2 [76]. Generally acidic pH and slightly elevated temperature favor reduction of Sb(V) 

to Sb(III). In vivo this process is mediated by T(SH)2 within Leishmania parasites and Cys or Cys-Gly within the 

acidic compartments of mammalian cells. But the stoichiometry of GSH and Sb(V) required for the reduction of 

antimony is equal to or more than 5 : 1. As the rate of reduction is very low, the physiological relevance of this 

conversion is still open to question.  Interestingly, promastigotes contain higher intracellular concentrations of 

T(SH)2 and GSH than amastigotes [77,78] and both stages maintain an intracellular pH value close to neutral 

[79]. Therefore, nonenzymic reduction of Sb(V) to Sb(III) fails to account for the insensitivity of promastigotes 

to Sb(V). On the other hand, recent studies have suggested the participation of an parasite-specific enzyme, 

thiol-dependent reductase (TDR1) in the process of reduction of Sb(V) to Sb(III) [80]. The enzyme TDR1 is a 

tetramer protein containing domains of the omega class of the glutathione S transferases (GSTs) and using GSH 

as the reductant. Although TDR1 has been found to be highly abundant in the amastigote stage of the parasite, 

the enzyme activity and antimony sensitivity in Leishmania amastigotes could not be directly correlated. An 

arsenate reductase homologue in Leishmania parasite (LmACR2) has also been shown to catalyse the reduction 

of Sb(V) in L. major in presence of GSH. LmACR2 requires glutaredoxin as cofactor for its enzyme activity and 

is inhibited by As(III), Sb(III) and phenylarsine oxide [81]. In contrast to TDR1, LmACR2 is a monomer. 

Transfection of LmACR2 in Leishmania infantum promastigotes augments pentostam sensitivity in intracellular 
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amastigotes, confirming its physiological significance. It is also possible that more than one mechanism is 

responsible for the reduction of Sb(V) to Sb(III) [28].  

3.2. Uptake of antimony 

Involvement of aquaglyceroporin AQP1 has been observed SbIII transport [82]. AQP1s are the members of the 

aquaporin super family. They are membrane channels that permit transport of small neutral solutes such as 

glycerol or urea [83]. The MS approaches have been used to demonstrate the accumulation of two forms of 

antimony i.e. Sb(V) and Sb(III), in both stages of the parasite. In a number of species, the accumulation of 

Sb(V) is higher in axenic amastigotes than in promastigotes [84,85]. It has been speculated that Sb(V) enters via 

a protein that recognizes a sugar moiety-like structure shared with gluconate, as gluconate has been shown to 

inhibit competitively the uptake of Sb(V) in axenic amastigotes [84]. Axenic amastigotes have also been found 

to be as sensitive to Sb(V) as intracellular parasites [86, 62,87,]. Accumulation of Sb(III) is competitively 

inhibited by the related metal As(III), whereas the accumulation of Sb(V) is not [83]. This strongly suggests that 

Sb(III) and As(III) enter the cell by the same route as that in yeasts and mammals [88]. Increased rates of uptake 

of SbIII correlated with the antimony sensitivity of the wild-type and drug-resistant transfectants of Leishmania 

[16, 12], Transfection of the AQP1 gene in a SAG-resistant field isolate conferred susceptibility to antimony. 

Overexpression of AQP in Leishmania produces hypersusceptibility to SbIII, whereas gene deletion renders the 

parasite resistant [7, 11]. This has provided a major insight into the uptake mechanism of drugs in Leishmania 

[7, 12]. Downregulation of AQP1 RNA levels seems to be a one of major mechanism of antimony resistance 

found in field and clinical isolates of Leishmania [76, 28].  

 

3.3. Efflux of the drug 

Overexpression of the membrane-bound ATP-binding cassette (ABC) transporters on the surfaces of 

Leishmania is another mechanism of antimonial resistance. In addition to Leishmania, this transport system 

modulates the efflux and intracellular accumulation of various drugs and thus resistance in other parasites (e.g., 

Plasmodium spp.) and also in cancer cells. Overexpression of ABC transporters concerns laboratory-derived and 

in-field resistant parasites [60, 89]. It has been found that, in contrast to infection with Sb-sensitive L. donovani 

isolates, infection with Sb-resistant L. donovani isolates upregulates the multidrug resistance-associated protein 

1 (MRP1) and the permeability glycoprotein (P-gp) in host cells, thus inhibiting intracellular drug accumulation 

by decreasing antimony influx [60,89,90]. In animal models, inhibition of the proteins MRP1 and P-gp by 

lovastatin reverses their action on drug accumulation and allows them to escape a fatal outcome [90]. These 

results indicate that lovastatin, which can inhibit P-gp and MRP1, might be beneficial for reverting Sb resistance 

in VL [90]. Flavonoid dimers are also known to reverse antimonial resistance in Leishmania in vitro by 

inhibiting ABC transporters and increasing the intracellular accumulation of the drug [90]. These findings 

should be confirmed in animal models [92]. 

3.4. Thiol metabolism  

Metabolisms of glutathione, trypanothione and uptake of SbIII respectively [16,12]. Thiol is essential for the 

survival of parasite. The enzymes that make and use this molecule are targets for the development of new drugs 

to treat Leishmanial disease [4]. Thiol metabolism possesses a key role in both laboratory and clinical resistant 

mechanism. Antimony cause the oxidative stress [93], a reducing environment within the cell and the presence 

of thiol become important for antimony resistance. TSH, the major thiol, is found only in trypanosomatids, and 

is a conjugate of GSH and spermidine [94]. The syntheses of these two precursors determine the level of TSH. 

The c-GCS gene, encoding c-glutamylcysteine synthetase, which catalyses the rate-limiting step in GSH 

biosynthesis [95], suggested that decreasing the intracellular thiol concentration through thiol depletors may 

increase the leishmanicidal action of drugs and thus reverse parasite resistance [96]. ODC gene encode ornithine 

decarboxylase, an enzyme involved in the regulation of spermidine biosynthesis, is also overexpressed [97,98]. 

This suggests that a lowering of intracellular thiol concentration may result in the attenuation of the resistant 

phenotype. This proposed hypothesis is confirmed by specific inhibitior BSO and DFMO inhibition studies. 

Overexpression of either ODC or y-GCS in L. tarentolae wild-type cells result in increased thiol level, almost 

equivalent to those of resistant mutant, but the transfectant do not exhibit arsenite resistance [95]. In natural 

antimonial resistance, the impaired thiol metabolism results in inhibition of SbV activation and decreased uptake 

of the active form SbIII by amastigotes, these processes are accomplished by the lower expression of the genes 

γ-glutamylcysteine synthetase, ornithine decarboxylase, and aquaglyceroporin 1, which are involved in the 

metabolisms of glutathione and trypanothione, and uptake of SbIII, respectively [18, 19, 28]. Interestingly, 

resistance to Sb(V) in L. donovani clinical isolates (India) is also reversed in animal models by treatment with 

BSO [99,100]. Leishmania, upregulation of resistance genes is frequently associated with genomic 

rearrangement, which leads to gene amplification through homologous recombination between repeated 
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sequences [101,102]. Therefore, either quantification of copy number or expression of genes known to be 

involved in antimony susceptibility should represent good biomarkers for addressing antimony resistance [98, 

103].    

4. Conclusions  

Drug resistance is a major impediment to successful treatment of Visceral Leishmaniasis. For almost seven 

decades pentavalent antimonial constituted the standard antileishmanial treatment worldwide, however the last 

15 years their clinical value was hampered due to the widespread emergence of resistance of these agents. The 

last years several mechanisms of in field antileishmanial resistance were identified. Understanding their 

molecular and biochemical characteristics will lead the design of new drugs and also the molecular surveillance 

of resistance. In order not to jeopardize the life span of available antileishmanial drugs, their delivery, clinical 

response, and resistance should be monitored. Overall the development of antileishmanial drugs has been 

generally slow and new drugs are urgent needed. 
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