
Vol-5 Issue-2 2019 IJARIIE-ISSN(O)-2395-4396

9776 www.ijariie.com 969

DESIGN AND IMPLEMENTATION OF UART IN

SYSTEM VERILOG

J.Chandramma
1
, K. Bharat Kumar

2
, S.Chaitra

3
, A.Rupesh

4
, K.Jaya Swaroop

5

1
 Student, ECE Department, Gandhiji Institute of Science and technology, Andhra Pradesh, India

2
 Student, ECE Department, Gandhiji Institute of Science and technology, Andhra Pradesh, India

3
 Student, ECE Department, Gandhiji Institute of Science and technology, Andhra Pradesh, India

4
 Student, ECE Department, Gandhiji Institute of Science and technology, Andhra Pradesh, India

5
 Assistant Professor, ECE Department, Gandhiji Institute of Science and technology, Andhra Pradesh,

India

ABSTRACT

In this paper we propose a technique for software implementation of an UART (Universal Asynchronous

Receive-Transmit) with the goal of getting a customizable UART-core which can be used as a module in

implementing a bigger system irrespective of one’s choice of implementation platform. Here at the

implementation of the system in a well efficient manner there is an effective utilization of the core based

on the strategy of the UART plays a crucial role in its representative analysis in a well oriented fashion

on the effective strategy of the VHDL plays a crucial role in its representation in a well effective manner

respectively. Here the above implementation takes place on the tool of the XILINX in a well stipulated

fashion with respect to the environment oriented well efficient strategy of the 10.1 ISE plays a crucial role

in its representation respectively. There is a test bench has been conducted on the well effective

environment based scenario based on the stipulated fashion of its implemented strategy of FPGA related

SPARTAN of 3e in a well efficient manner respectively. The simulation results as well as the test results

are seen to be satisfactory.

Keyword, Universal Asynchronous Receives and Transmits, Soft Core Implementation, Independent

Platform, VHDL Respectively

1. Introduction

There is a huge establishment of the system takes place in the environment of the communication related to the

aspect of the serial phenomena plays a crucial role in its representative analysis of the transmission of the data in a

simultaneous fashion respectively . Here apart from the strategy of the consumption of the power plays a crucial role

in its representative analysis point of view where there is an accurate consumption of the power that is programming

based on the on board strategy plays an efficient role and the responsibility in its representative analysis point of

view respectively. Here there is a communication of the data takes place in the serial manner respectively.

Asynchronous serial communication has advantages of high reliability, less transmission line and long transmission

distance, therefore is widely used to exchange data between a computer and external devices. Asynchronous serial

communication is implemented by UART. It provides full-duplex communication in serial link; this has been widely

used in the data communications. UART includes a transmitter and a receiver. Transmitter controls transmission by

taking a data word in parallel format and directing the UART to transmit it in a serially. Likewise, the Receiver must

detect transmission, receive the data in serially, and store the data word in a parallel format. The conversion of serial

to parallel data is handled by UART. Serial communication reduces the distortion of a signal; therefore data transfer

is possible between two systems separated by great distance. The UART serial module is divided into three sub-

modules: The baud rate generator, receiver module and transmitter module. The baud rate generator is used to

produce a local clock signal. In data transmission through the UART, once the baud-rate has been established, both

the transmitter and the receiver’s internal clock are set to the same frequency. TXD is the transmit side, i.e. the

output of the UART RXD is the receiver, i.e. the input of the UART. The UART receiver module is used to receive

Vol-5 Issue-2 2019 IJARIIE-ISSN(O)-2395-4396

9776 www.ijariie.com 970

the serial signals at RXD and convert them into parallel data. The UART transmit module converts the data bytes

into serial bits according to the frame format and transmits those bits through TXD.UART’s basic features are:

There are two states in the signal line, using logic high and logic low to distinguish respectively. UART frame

format consist of a start bit, data bit, parity bit and stop bit. After the Start Bit the data bits are sent, with the Least

Significant Bit (LSB) sent first. The start bit is always low and the stop bit is always high. When the complete data

word has been sent, it adds a parity bit this parity bit may be used by the receiver to perform error checking. Then at

least one Stop Bit is sent by the transmitter. Because asynchronous data are “self-synchronizing”, if there is no data

to transmit, the transmission line will be idle.

2. The UART Module

Fig-1: Uart Block Diagram

The UART module that we have designed consists of five parts namely (i) “uart-rx”, which takes in the serial data

(as a frame) coming through the ‘rx’ line, retrieves the actual data and converts to parallel form (usually as a byte).

(ii) “uart-tx”, which does the opposite function of the “uart-rx” module and transmits the frame through the ‘tx’ line.

(iii) “baudgen”, which generates a clock which occurs 16-times(the default over-sampling rate)in one bit-time

period. (iv) “tx-fifo”, which stores temporarily the bytes (that usually comes from a faster processor) to send, as the

sending process takes some time. (v) “rx-fifo”, which is the replica of the “tx-fifo”vi) No. of buffers needed to cope

up with the speed difference between the system using the UART and the rate at which data are coming (default-

8).And the core is made available in full VHDL-which makes it platform-independent.

2.1 UART Protocol

The UART protocol is a serial communication protocol that takes bytes of data and transmits the individual bits in a

sequential fashion. At the destination, a second UART re-assembles the bits into complete bytes. The UART usually

does not directly generate or receive the external signals used between different items of equipment. Separate

interface devices are used to convert the logic level signals of the UART to and from the external signaling levels.

External signals may be of many different forms. Examples of standards for voltage signaling are RS-232, RS-422

and RS-485 from the EIA. Typically its a 3-line (transmit, receive, ground) communication. Communication which

enables it to be “full duplex” (both send and receive at the same time) or “half duplex” (devices take turns

transmitting and receiving).

2.2 Transmitter

Transmission operation is simpler since it is under the control of the transmitting system. As soon as data is

deposited in the shift register after completion of the previous character, the UART hardware generates a start bit,

shifts the required number of data bits out to the line, generates and appends the parity bit (if used), and appends the

stop bits. Since transmission of a single character may take a long time relative to CPU speeds, the UART will

Vol-5 Issue-2 2019 IJARIIE-ISSN(O)-2395-4396

9776 www.ijariie.com 971

maintain a flag showing busy status so that the host system does not deposit a new character for transmission until

the previous one has been completed; this may also be done with an interrupt. Since full-duplex operation requires

characters to be sent and received at the same time, practical UARTs use two different shift registers for transmitted

characters and received characters.

2.3 Receiver

All operations of the UART hardware are controlled by a clock signal which runs at a multiple (say, 16) of the data

rate - each data bit is as long as 16 clock pulses. The receiver tests the state of the incoming signal on each clock

pulse, looking for the beginning of the start bit. If the apparent start bit lasts at least one-half of the bit time, it is

valid and signals the start of a new character. If not, the spurious pulse is ignored. After waiting a further bit time,

the state of the line is again sampled and the resulting level clocked into a shift register. After the required number

of bit periods for the character length (5 to 8 bits, typically) have elapsed, the contents of the shift register is made

available (in parallel fashion) to the receiving system. The UART will set a flag indicating new data is available, and

may also generate a processor interrupt to request that the host processor to transfer the received data. In some

common types of UART, a small first-in, first-out FIFO buffer memory is inserted between the receiver shift register

and the host system interface. This allows the host processor more time to handle an interrupt from the UART and

prevents loss of received data at high rates

3. Simulation and Synthesis Results

We have simulated each and every part of our module separately in modelsim6.4b. The simulation results for the

‘baudgen’, ‘fifo’, ‘uart-rx’, and ‘uart-tx’ sub modules are shown in the figures below respectively. We have

synthesis top module in Xilinx10.1.

Fig.2. UART Transmitter

Vol-5 Issue-2 2019 IJARIIE-ISSN(O)-2395-4396

9776 www.ijariie.com 972

 Fig.3. UART Receiver

Fig.4. FIFO

Fig.5 Top Module

Vol-5 Issue-2 2019 IJARIIE-ISSN(O)-2395-4396

9776 www.ijariie.com 973

4. Schematic Result

Fig.6 Schematic Result of UART Top Module

Fig.7 Schematic Result of Uart

Vol-5 Issue-2 2019 IJARIIE-ISSN(O)-2395-4396

9776 www.ijariie.com 974

4. Synthesis Report

Total percentage of the device (spartan 3-an) resources utilized to implement our module has been calculated by

Xilinx-XST synthesizer which is found to be nominal.

Fig 8 Synthesis report of UART

5. CONCLUSIONS

We have concluded that the authors had used FIFO and Shift register separately for storing the data and in some

paper they have used baud rate generator with single frequency. In this we had used FIFO as well as Shift register

and also an automatic baud rate generator which will change its baud rate according to the change in frequency. This

design uses VHDL language to achieve the modules of the UART. We have designed our UART module in generic

form which is operating fine with no under run error and can be customized to make it free from overrun error with

the capability provided and so can be made available as IPcore (Intellectual-Property-Core) by simply coating it

with a proper wrapper

.

6. REFERENCES

[1] James O. Hamblen, Tyson S. Hall, Michael D. Furman, Rapid prototyping of digital systems, 2nded., springer

Publication, 2001.

[2] Dauglas L. Perry, VHDL Programming by Example, 4thed., The Tata-McGrawHill Pub, 2002.

[3] Volnei A. Pedroni, Circuit Design with VHDL, 3rded., The MIT Press, 2004..

[4] XilinxInc, xpsuart lite v1.00, 3rded. DS571, January 14, 2008.

[5] ARM Ltd, AMBA 3 APB Protocol Specification, 2nded.

[6] Verilog HDL by Samir Palnitkar Publisher: Prentice Hall PTR (January 15, 1996)

[7]. Paragk.Lala Introduction to Logic Circuit Testing Morgan and Claypool Publishers 2009.

[8]. Naresh Patel Vatsalkumar Patel, Vikaskumar Patel ”VHDL Implementation of UART with Status Register” in

International Conference on Communication Systems and Network Technologies.2012.
.

