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ABSTRACT 
This paper is concerned with the analysis of exponential stability for a class of discrete time recurrent neural 

network with time varying delay and time delay.For the former the activation function is more general than the 

recently commonly used Lipschitz conditions. Under such mild conditions we prove the existence of the equilibrium 

point.Then by employing a Lyapunov – Krasovskii functional, a unfied Linear Matrix Inequality(LMI) is developed 

to establish sufficient conditions for DRNN to be globally exponentially stable. For the latter the stability is 

analysed with time delays and Markovian jumping parameters. The purpose of the problem addressed is to derive 

some easy-to-test conditions such that the dynamics of the neural network is exponentially stable  independent of the 

time delays.Then by employing Lyapunov –Krasovskii, LMI approach is developed to verify the exponential stability  
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1.1INTRODUCTION:              
                                     The last few decades have seen successful applications of recurrent neural networks 

(RNNs) to a variety of information processing systems such as signal processing, pattern recognition, optimization, 

model identification and associative memories, where the rich dynamical behaviours of RNNs have played a key 

role. It has recently been revealed that signal transmission delays may cause oscillation and instability of the neural 

networks. Therefore, various analysis aspects for RNNs with delays have drawn much attention, and many results 

have been reported. In particular, the existence of equilibrium point, global asymptotic stability, global exponential 

stability, and the existence of periodic solutions have been intensively investigated. Note that, up to now, most 

recurrent neural networks have been assumed to act in a continuous-time manner. However, when it comes to the 

implementation of continuous-time networks for the sake of computer-based simulation, experimentation or 

computation, it is usual to discretize the continuous-time networks. In fact, discrete-time neural networks have 

already been applied in a wide range of areas, such as image processing, time series analysis, quadratic optimization 

problems and system identification, etc. In an ideal case, the discrete – time analogues should be produced in a way 

to reflect the dynamics of their continuous-time counterparts. Specifically, the discrete-time analogue should inherit 

the dynamical characteristics of the continuous-time networks under mild or no restriction on the discretization step-

size and also maintain functional similarity to the continuous-time system and any physical or biological reality that 

the continuous-time networks has. Unfortunately, the discretization cannot preserve the dynamics of the continuous-

time counterpart even for a small sampling period. In the other words, the RNNs may have finite modes, and the 

modes may switch from one to another at different times. It has been shown that the switching between RNN modes 

can be governed by a Markovian Chain. Hence, an RNN with a jumping character may be modelled as a hybrid one; 

that is the state space of the RNN contains both discrete and continuous states. The dynamics of the RNN is 

continuous but the parameter jumps among different modes may be seen as discrete events.                                                                                                         

 On the other hand, some global exponential stability criteria for the equilibrium point of discrete-time 
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recurrent neural networks with variable delay have been presented with specific performances such as decay rate 

and trajectory bounds. Based on the linear matrix inequality(LMI), the uniqueness and global exponential stability of 

the equilibrium point have been investigated for discrete-time bi-directional associative memory(BAM) neural 

networks with variable delays. Very recently, a class of discrete-time neural networks involving variable delays have 

been dealt with, and sufficient conditions on existence, uniqueness and globally exponential stability of the 

equilibrium point have been derived by applying M-matrix theory. The activation functions of the discrete-time 

neural networks with time delays are assumed to satisfy Lipschitz conditions and the derived stability criteria are 

mostly delay-independent which tend to be conservative. The main purpose is to investigate the stability analysis 

problem of the exponential stability for a class of delayed discrete-time recurrent neural networks under more 

general description on the activation functions, and obtain less conservative stability criteria by using a unified linear 

matrix inequality(LMI) approach. It is shown that the delayed discrete-time recurrent neural networks are globally 

exponentially stable if a certain LMI is solvable. 

 
1.2 PROBLEM FORMULATION:                                                                                    

In this paper, the recurrent neural network with time delays is described as follows:                                 

                             (t) = −Au(t) +W0g0(u(t)) +W1g1(u(t − h)) + V                                                               

(1) where u(t) = [u1(t), u2(t), … , un(t)]T  n  is the state vector associated with the n neurons, the 

diagonal matrix A = diag(a1,a2, … ,an) has positive entries ai > 0. The matrices W0 = ( )nxn and W1 = 

( )nxn are the connection weight matrix and the delayed connection weight matrix, respectively. k(u(t)) 

= [ k1(u1), k2(u2),…, kn(un)]T(k = 0, 1) denotes the neuron activation function with k(0) = 0, and V 

= [V1, V2,… ,Vn]T is a constant external input vector. The scalar h > 0, which may be unknown, denotes 

the time delay.        ASSUMPTION1:                                                                                                                            

   The neuron activation functions in (1), i (・), are bounded and satisfy the following 

Lipschitz condition                                                                                                                           

   | k(x)− k(y)|≤ |Gk(x−y)|,∀ x,y  (k=0,1)                            (2)                   

where Gk  nxn is a known constant matrix. In the past, the activation functions have been required to be 

continuous, differentiable and monotonically increasing, such as the sigmoid-type of function. In this 

paper, these restrictions are removed, and only Lipschitz conditions and boundedness are needed in 

Assumption 1. For the purpose of simplicity, we can shift the intended equilibrium u* to the origin by 

letting x = u − u*, and then the system (1) can be transformed into:                                                                                               

                                         (t) = −Ax(t) +W0l0 (x(t)) +W1l1(x(t − h))                 (3)                                          

where x(t) = [x1(t), x2(t),…, xn(t)]T n is the state vector of the transformed system. It follows from (2) 

that the transformed neuron activation functions lk(x) = k (x + u*) − k (u*) (k = 0, 1) satisfy                                              

                                                 |lk (x)| ≤ |Gkx|,                                                        (4)                                

where Gk nxn (k = 0, 1) are specified in (2).                                                                                                     

Now, based on the model (3), we are in a position to introduce the delayed recurrent neural networks with 

Markovian jumping parameters.                                                                                                                         

Let {r(t), t ≥ 0} be a right-continuous Markov process on the probability space which takes values in the 

finite space S = {1, 2, . . . ,N} with generator Г = (γij) (i, j  S) given by                                           

   P{r(t + Δ) = j|r(t) = i} =                                                          

Where Δ > 0 and limΔ→0o(Δ)/ Δ = 0, γij≥ 0 is the transition  rate from i to j if i j and γii = −                         

  In this paper, we consider the following delayed recurrent neural network with Markovian 
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jumping parameters, which is actually a modification of (3):                                       

       (t)=−A(r(t))x(t)+W0(r(t))l0(x(t))+W1(r(t))l1(x(t−h)                           (5)  

 Where x(t), l0(x(t)) and  l1(x(t − h)) have the same meanings as those in (3), and for a fixed system mode,       

A(r(t)), W0(r(t)) and W1(r(t)) are known constant matrices with appropriate dimensions.                                     

Recall that the Markov process {r(t), t ≥ 0} takes values in the finite space S = {1, 2, . . . ,N}.  For the sake 

of simplicity, we write                                                                               

                  A(i): = Ai, W0(i): = W0i, W1(i): = W1i.                                     (6)          

     Now we shall work on the network mode 

 r(t) = i, ∀ i S. Observe the neural network (5) and let x(t;ξ) denote the state trajectory from the initial data 

x(θ) = ξ (θ) on −h ≤ θ ≤ 0 in L2 0([−h, 0]; n). Clearly, the network (5) admits an equilibrium point 

(trivial solution) x(t; 0) ≡ 0 corresponding to the initial data ξ=0.                                                                        

DEFINITION  

  For the delayed recurrent neural network (5) and every ξ  L2Ƒ0([−h, 0]; n),the equilibrium 

point is asymptotically stable in the mean square if, for every network mode   

                                                              (7)                          

and is exponentially stable in the mean square if, for every network mode, there exist scalars α > 0 and β > 

0 such that                                                                                                                                          

           |x(t;  )|2 ≤ αeβt sup-h≤θ≤0 |  (θ)|2.                                           (8)           

 Our objective of this paper is to establish LMI-based stability criteria under which the network dynamics 

of (5) is exponentially stable in the mean square, independent of the time delay.                                         

1.3 MAIN RESULTS AND PROOFS                                                                                                         

  Let us first give the following lemmas which will be frequently used in the proofs of our main 

results in this paper.                                                                                                                                                  

LEMMA 1:                                               

   Let x  n, y  n and  > 0. Then we have xT y + yT x ≤  xT x +  -1 yT y.                                            

PROOF:           

   The proof follows from the inequality ( 1/2 x- -1/2 y)T( 1/2 x- -1/2 y) ≥ 0 

immediately.      LEMMA 2:                                                                                                                                              

   Given constant matrices Ω1, Ω2, Ω3, where Ω|1= Ω1T, and 0 < Ω2=Ω2T, then Ω1 + 

Ω3T Ω2-1 Ω3 < 0                       if and only if  < 0, or  < 0.                                                                                                                   

THEOREM 1:                                                                                                                                                  

  If there exist two sequences of positive scalars {μ0i > 0, μ1i > 0, i  S} and a sequence of 

positive definite matrices Pi = PiT > 0 (i  S) such that the following linear matrix inequalities 

           

        (9)  

hold, then the dynamics of the neural network (5) is globally exponentially stable in the mean square. 

PROOF:                                                                                                                                                          

Let C2,1( ×S; denote the family of all nonnegative functions Y (x, t, i) on ×S 



Vol-3 Issue-4 2017  IJARIIE-ISSN (O)-2395-4396 

6181 www.ijariie.com 1472 

which are continuously twice differentiable in x and differentiable in t. Denote   

 =  , =                                                                                  (10)          

    Fix  ([-h,0]; ) arbitrarily and write x(t, =x(t). Define a Lyapunov functional candidate                       

Y(x, t, i)  C2,1(( ×S; ) By       

Y(x(t), r(t) = i) := Y (x(t), t, i)= xT (t)Pix(t)+ T(s)Qx(s)ds                      (11) 

where Q ≥ 0 is given as         

Q =                                                                                      (12)                                

It is known (see [13]) that {x(t), r(t)} (t ≥ 0) is a 1, 0]; )×S-valued Markov process.From (5), the weak 

infinitesimal operator L (see [10]) of the stochastic process {r(t), x(t)} (t ≥ 0) is given by:   

                                                                                                           

                       It follows from                                               (13)                              

         (14)              

From Lemma                                                                                                                                  

    Let x  n, y  n and  > 0. Then we have xT y + yT x ≤  xT x +  

-1 yT y &   |lk (x)| ≤ |Gkx|,(where Gk nxn (k = 0, 1), we have:  

 xT(t)PiW0il0(x(t)) + (x (t)) Pix(t)≤                                 

    ≤                          (15)             

 and xT(t)PiW1il1(x(t-h)) +  (x (t-h))  Pix(t) 

≤                                  

≤             (16)          

Define                                                                                                                                                                      

           AiPi -

PiAi+ +    

 In view of (12) and (14)-(17), it follows from (13) that                                                       

LY (x(t), i) ≤ xT(t)IIx(t).                                                                    (18)  

 

Now, Pre- and post-multiplying the inequality (9)by the block-diagonal matrix                               

      diag{I,  I,  I,  I,  I } 

                  

 < 0,                              
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 (19)                                                                              Or    

                   < 0                                                              

(20)   AiPi -PiAi+      

T                                  It follows from the 

Schur Complement Lemma (Lemma 2) that (20) holds if and only if                                                                 

    ˂0,                                                                                                                                      

     or      

                   

  (21)                          

                 Which means II<0 where II is defined in (17). We are now ready to prove the 

exponential stability in the mean square for the neural network (5). Letβ> 0 be the unique root of 

the equation    (-II) − β ( ) − βh (Q)xβh = 0,                                 (22)    

Where Q is defined in (12),  is the positive definite solution to (9) or (21), and h is the time 

delay. We can obtain from (11) that                                              

    

 

                   Then, integrating both sides from 0 to T > 0 gives           

 
       

     

Notice that                                            

   

 Then, considering the definition of  in (22), we have                                                          

                                                            & 

                      
Since T > 0 is arbitrary, the definition of mean square exponential stability is then satisfied, 

hence the proof of Theorem 1 is completed.  Hence  the proof.                                                                 

 CONCLUSION:                                                                                                                                    

 This paper, we have dealt with the problem of global exponential stability analysis for a class of 

general recurrent neural networks, which both time delays and Markovian jumping parameters. We have 
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removed the traditional monotonicity and smoothness assumptions on the activation function. A linear 

matrix inequality (LMI) approach has been developed to solve the problem addressed. The conditions for 

the global exponential stability have been derived in terms of the positive definite solution to the LMIs, and 

a simple example has been used to demonstrate the usefulness of the main results.                                 
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