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ABSTRACT 
Forest degradation in interaction with the ever-increasing world population is part of the various major 

environmental problems. Therefore, this publication consists of the presentation of a new method using a 

Markovian approach called zone model. The latter models the dynamics and management of the forest surface 

in interaction with the dynamics of the human population. For the case of the Haute Matsiatra region, the 

results of calculations show that the constant growth in the size of the human population amplifies the 

degradation of the forest surface. On the other hand, with the confidence intervals of the zone model, it is 

possible to gradually restore the destroyed parts. As the case of the Haute Matsiatra region, by preserving 

0.05ha per inhabitant as the surface of housing and infrastructure and 503905ha that of cultivable areas, 

according to calculations, from 2022, it is necessary to catch up at least 1104.178ha of reforestation per year, 

to conserve the forest cover of 55126.554ha and to gradually restore the parts destroyed by the fires and by the 

operations until 2050. 

 

Keyword: Markov chain, population dynamics, forest dynamics, forest management, area model, 

confidence interval. 

 
 

I. INTRODUCTION 

According to the Chinese proverb “one generation plants a tree, the next benefits from its shade” and the World 

Report on Human Development of 2007/2008 shows that the unceasing increase in consumers multiplies the 

problem of global warming. The latter can lead to adverse consequences on global socio-economic and socio-

environmental organizations. Indeed, good decision-making on the greenhouse gas reduction policy is essential. 

In the latter, the conservation of forest resources is a fundamental tool and this phenomenon encourages 

researchers to deduce that the continual increase in the world's population is accelerating this ravage. Thus, does 

the new method based on the Markov chain facilitate decision-making on forest management? This article starts 

with the state of the art, then the general methodology, then the theoretical results on the mathematical modeling 

of human population dynamics, as well as the area model and the confidence interval of forest conservation, and 

at the end, the case study of the Haute Matsiatra region as well as the general conclusion. 

II. STATE OF THE ART 

In short, we performed bibliographic and webographic research to define the state of the art and to demonstrate 

the originality of the ideas. According to bibliographic research on population dynamics and the dynamics of 

forest surfaces with the Markov chain, most authors focus on the study of the dynamics of particles, cells, 

animal species and agricultural territories. Some authors accumulate image analyzes using remote sensing and 

GIS ( Geographic Information System) in order to inform the dynamics of land use . In particular, some 

researchers have studied the dynamics of forest territories by the Markov chain such as: 
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 Dr. RATIARSON V.'s thesis: He uses a stochastic approach to simulate changes in land use states 

governed by rules of forest plots from their first clearing. He proposed the period-homogeneous 

Markov model to simulate the case of the forest corridor of Fianarantsoa, Madagascar ; 

 Aurélie Beynier's thesis: She uses Decentralized Markov decision-making processes for task planning 

in real applications. She invented the OC-DEC-MDPs (DEC-MDP with Occasional Cost) and the 

concept of occasioned cost. 

 El Ghali LAZRAK's thesis: He develops a generic method for modeling the past and current dynamics 

of the territorial organization of agricultural activity (OTAA). He has developed a method of 

stochastic modeling based on hidden Markov models which makes it possible to search a corpus of 

spatio-temporal land cover (OCS) data with a view to segmenting it and revealing hidden agricultural 

dynamics. 

 Mélanie Zetlaoui's thesis: she uses mathematical approaches to estimate stand dynamics using 

confidence intervals based on the Usher model. She invented the delta-method for obtaining the 

asymptotic distribution of the maximum likelihood estimators of predictions. 

On the other hand, the originality of this thesis project is based on: 

 The use of a new theory called the area model which models the dynamics of the forest surface 

according to the dynamics of the human population (based on the Markov chain of life and death), by 

considering the dependence of the population with forest resources; 

 The use of confidence intervals of the zone model, for the management of forest areas, in the face of 

population growth. 

 

III. GENERAL METHODOLOGY 

3-1. Principle of modeling: 

The general principle consists of systemic studies of the interactions of the human species with its surroundings 

and studies of their actions towards nature. 

According to Darwin's theory of natural selection, humans are predators of all kingdoms (animal and plant). On 

the other hand, the plant kingdoms (trees, fruit trees, plants, ...) play major roles in environmental issues and 

human life. Thus, the interdependence of the human species with the animal and plant kingdoms is an inevitable 

parameter in the study of environmental management. 

Categorically, the possible actions of humans are distinguished by consumption, destruction and restoration. 

In practice, behavioral studies of the target population are based on the results of surveys concerning the trend of 

consumer habits. As well as the necessary information, for the studies of the previous forest states until its 

current state of the target region, are collected by written surveys. 

In particular, the methodology of these surveys is based on oral and written information, using questionnaires 

and documentary research respectively. 

Thus, the data collected concerns utilitarian individuals and loggers, as well as information in the urban and 

rural areas of Madagascar (in particular, the Haute Matsiatra region). 

 

3-2. Markov model: 

The Markov property describes a property satisfied by many random phenomena, for which the future evolution 

depends on the past only through its value at the present time. To begin with, we are going to introduce a formal 

definition: a Markov chain is a random sequence {𝑋𝑛;  𝑛 =  0;  1;  2;  … }, defined on a probability 

space (Ω; 𝐹;  𝑃),with values in a set E which can be arbitrary, but which will be here either neither nor 

countable, and which enjoys the Markov property. Without immediately giving a formal definition, let us 

indicate that a Markov sequence has the property that knowing 𝑋𝑛, we can forget the past to predict the future. 

One way to construct such a sequence is to give oneself a sequence of random variables  
{𝑌𝑛;  𝑛 ≥ 1} which are mutually independent, and globally independent of  𝑋0, with values in  𝐹,and a map 

𝑓 ∶  𝐼𝑁 × 𝐸 × 𝐹 ⟶ 𝐸, such as for  𝑛 ≥ 1, 𝑋𝑛 = 𝑓(𝑛; 𝑋𝑛−1; 𝑌𝑛). 

In a way, it is the simplest model of a sequence of non-independent random variables. By definition, the in-

valued  𝐸 stochastic process {𝑋𝑛, 𝑛 ∈ ℕ} is called a Markov chain if for all 𝑛 ∈ ℕ, the conditional law of 

 𝑋𝑛+1knowing 𝑋0, 𝑋1, … , 𝑋𝑛 does equal to the conditional law know 𝑋𝑛 :  ∀𝑥0, 𝑥1, … , 𝑥𝑖 , 𝑥𝑗 ∈ 𝐸, 

𝑃(𝑋𝑛+1  =  𝑥𝑗/𝑋0 =  𝑥0; 𝑋1 =  𝑥1; … ; 𝑋𝑛 =  𝑥𝑖)  =  𝑃(𝑋𝑛+1  =  𝑥𝑗/𝑋𝑛 =  𝑥𝑖) 

Where the law of  𝑋0 is called the initial law of the Markov chain {𝑋𝑛 , 𝑛 ∈ ℕ}. 

We put  𝑞𝑖𝑗 = 𝑃(𝑋𝑛+1  =  𝑥𝑗/𝑋𝑛 =  𝑥𝑖) and 𝑄 = (𝑞𝑖𝑗  ;  𝑥𝑖  , 𝑥𝑗 ∈ 𝐸). The matrix 𝑄 is said to be Markovian, in 

the sense that it satisfies the property that ∀𝑥𝑖 ∈ 𝐸, the row  (𝑞𝑖𝑗 ;  𝑥𝑗 ∈ 𝐸) vector is a probability measure on 𝐸 

(𝑞𝑖𝑗 ≥ 0; ∀𝑥𝑗 ∈ 𝐸; ∑ 𝑞𝑖𝑗𝑗∈𝐸 = 1). In other words, the matrix 𝑄 is called the “Markov chain transition matrix”. 
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IV. THEORETICAL RESULTS 

4-1. Human population dynamics 

4.1.1. Markov chain of life and death and population growth rate: 

Let be (𝐻𝑛) the random variable that models the size of the human population where  𝑛 is the rank of the year. 

We denote by ℎ𝑛 the value taken by the random variable (𝐻𝑛) at rank 𝑛. 

We denote by 𝐸 the state space of all possible values of the random variable ( 𝐻𝑛). 
Let  𝑛1 and 𝑛2 such that  ∆𝑛 = 𝑛2 − 𝑛1( 𝑛1 < 𝑛2) where  ∆𝑛 is called the duration of the period 

between [𝑛1, 𝑛2[. 

For all 𝑛 ∈ [𝑛1, 𝑛2[, and for all 𝑗 ∈ 𝐸, let ∝𝑗  be the birth rate and 𝜇𝑗 the death rate during the period ∆𝑛 so that 

the size of the population is equal to j in year 𝑛 + ∆𝑛. Then  

ℎ𝑛+∆𝑛 = (1 + 𝜎∆𝑛)ℎ𝑛 = 𝑗 ∈ 𝐸. 
Where, for all  𝑛 ∈ [𝑛1, 𝑛2[, 𝜎∆𝑛 =∝𝑗− 𝜇𝑗  and this is the rate of population during the period  ∆𝑛. 

Let  𝑖, 𝑗 ∈ 𝐸 and be   𝑝𝑖𝑗(𝑛) = 𝑃𝑟{ 𝐻𝑛+∆𝑛 = 𝑗/ 𝐻𝑛 = 𝑖} the probability of having a population size 𝑗 in year 

 𝑛 + ∆𝑛 given that 𝑖 the size in year 𝑛. 

As the size of the population at time  𝑛 + ∆𝑛 only depends on its initial state at time  𝑛, thus the value taken by 

the random variable (𝐻𝑛+∆𝑛) only depends on the value taken by the random variable (𝐻𝑛) (ℎ𝑛+∆𝑛 only depends 

on  ℎ𝑛). Then,  (𝐻𝑛)  is a Markov chain who’s the state space is 𝐸 = {(1 + 𝜎∆𝑛)𝑖 = 𝑗, 𝑖 ∈ 𝐼𝑁∗ 𝑒𝑡 𝑗 ≥ 0} and the 

transition matrix is 𝑃 = (𝑝𝑖𝑗(𝑛)). 

In particular, for human population estimation, it is more realistic to work in a finite state space. 

It is difficult to imagine the extinction of the human population, thus, it is assumed that there exists a smallest 

strictly positive integer 𝑔 such that 𝐸 = {𝑔, 𝑔 + 1, 𝑔 + 2, … , 𝑁} where 𝑁 is a finite natural number. 

According to the processes of birth and death (homogeneous in time) in a finite state space, given the state  𝑖 
(𝑖 > 𝑔, 𝑖 ≠ 𝑁): 

 𝑝𝑖,𝑖+1(∆𝑛) =∝𝑖 ∆𝑛+ 𝑜(∆𝑛) 

 𝑝𝑖,𝑖−1(∆𝑛) = 𝜇𝑖∆𝑛+ 𝑜(∆𝑛) 

 𝑝𝑖,𝑖(∆𝑛) = 1 − (∝𝑖 ∆𝑛 + 𝜇𝑖∆𝑛) + 𝑜(∆𝑛) 

 lim𝑛⟶+∞ 𝑝𝑖𝑗(𝑛) = 𝑝𝑗 (it is the stationary probability for the state to be in a state 𝑗 whatever the future 

years) and  𝑉 = (𝑝𝑗)(the stationary law). 

That is to say, to the state  𝑖 one can pass in a very short time ∆𝑛 only to the state 𝑖 − 1 or  𝑖 + 1, in particular, 

from 𝑁 one can only pass to  𝑁 − 1. 

From the Chapman- Kolmogorov equation,  𝑝𝑖𝑗(𝑛 + ∆𝑛) = ∑ 𝑝𝑖𝑘(𝑛)𝑝𝑘𝑗(∆𝑛)∞
k=0 . This sum can be written as 

𝑝𝑖𝑗−1(n)𝑝𝑗−1𝑗(∆𝑛) + 𝑝𝑖𝑗(𝑛)𝑝𝑗𝑗(∆𝑛) + 𝑝𝑖𝑗+1(n)𝑝𝑗+1𝑗(∆𝑛) + ∑ 𝑝𝑖𝑘(𝑛)𝑝𝑘𝑗(∆𝑛)

k<𝑗−1
k>𝑗+1

 

As ∑ 𝑝𝑖𝑘(𝑛)𝑝𝑘𝑗(∆𝑛)k<𝑗−1
k>𝑗+1

≤ ∑ 𝑝𝑘𝑗(∆𝑛)k<𝑗−1
k>𝑗+1

 

But ∑ 𝑝𝑘𝑗(∆𝑛)k<𝑗−1
k>𝑗+1

= 1 − (𝑝𝑗𝑗(∆𝑛) + 𝑝𝑗−1𝑗(∆𝑛) + 𝑝𝑗+1𝑗(∆𝑛)) 

= 1 − (1 − (∝𝑗 ∆𝑛 + 𝜇𝑗∆𝑛) − 𝑜(∆𝑛) + 𝜇𝑗∆𝑛 + 𝑜(∆𝑛) +∝𝑗 ∆𝑛 + 𝑜(∆𝑛)) = 1 − 1 − 𝑜(∆𝑛) = 𝑜(∆𝑛) 

Thereby, 𝑝𝑖𝑗(𝑛 + ∆𝑛) = 𝑝𝑖𝑗−1(𝑛)𝑝𝑗−1𝑗(∆𝑛) + 𝑝𝑖𝑗(𝑛)𝑝𝑗𝑗(∆𝑛) + 𝑝𝑖𝑗+1(𝑛)𝑝𝑗+1𝑗(∆𝑛) + 𝑜(∆𝑛) 

𝑝𝑖𝑗(𝑛 + ∆𝑛) = 𝑝𝑖𝑗−1(𝑛) ∝𝑗−1 ∆𝑛 + 𝑝𝑖𝑗(𝑛)(1 − (∝𝑗 ∆𝑛 + 𝜇𝑗∆𝑛)) + 𝑝𝑖𝑗+1(𝑛)𝜇𝑗+1∆𝑛 + 𝑜(∆𝑛) 

 𝑝𝑖𝑗(𝑛 + ∆𝑛) − 𝑝𝑖𝑗(𝑛) = 𝑝𝑖𝑗−1(𝑛) ∝𝑗−1 ∆𝑛 − (∝𝑗 ∆𝑛 + 𝜇𝑗∆𝑛)𝑝𝑖𝑗(n) + 𝑝𝑖𝑗+1(𝑛)𝜇𝑗+1∆𝑛 + 𝑜(∆𝑛) 

𝑝𝑖𝑗(𝑛 + ∆𝑛) − 𝑝𝑖𝑗(𝑛)

∆n
= 𝑝𝑖𝑗−1(𝑡)𝛼𝑗−1 − (𝛼𝑗 + 𝜇𝑗)𝑝𝑖𝑗(𝑛) + 𝑝𝑖𝑗+1(𝑛)𝜇𝑗+1 +

𝑜(∆𝑛)

∆𝑛
 

If  ∆𝑛 → 0 (𝑛1 → 𝑛2), we have 𝑝𝑖𝑗−1(𝑡)𝛼𝑗−1 − (𝛼𝑗 + 𝜇𝑗)𝑝𝑖𝑗(𝑛) + 𝑝𝑖𝑗+1(𝑛)𝜇𝑗+1 = 0 

Since 𝑁 is the upper bound of  𝐸 and all elements of  𝐸 are greater than or equal to  𝑔, then 

 𝜇𝑔 = 0 (no person died if the size of the population is equal to the lower bound 𝑔 of  𝐸) 

 for  𝑗 = 𝑔,  we have−𝛼𝑔𝑝𝑖𝑔(𝑛) + 𝑝𝑖𝑔+1(𝑛)𝜇𝑔+1 = 0 

 for  𝑗 = 𝑁,  we have  −𝛼𝑁−1𝑝𝑖𝑁−1(𝑛) + 𝑝𝑖𝑁+1(𝑛)𝜇𝑁+1 = 0 

 for any 𝑗, we have   𝑝𝑖𝑗−1(𝑛)𝛼𝑗−1 − (𝛼𝑗 + 𝜇𝑗)𝑝𝑖𝑗(n) + 𝑝𝑖𝑗+1(𝑛)𝜇𝑗+1 = 0 

These equations are called equations of the future and they provide the equations of states. 

As lim𝑛⟶+∞ 𝑝𝑖𝑗(𝑛) = 𝑝𝑗  and 𝑔 − 1 ∉ 𝐸 then: 

−𝛼𝑔𝑝g + 𝜇𝑔+1𝑝𝑔+1 = 0 (1-1) 

∝𝑁−1 𝑝𝑁−1 − 𝜇𝑁𝑝𝑁 = 0 (1-2) 
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∝𝑗−1 𝑝𝑗−1 − (∝𝑗+ 𝜇𝑗)𝑝𝑗 + 𝜇𝑗+1𝑝𝑗+1 = 0 (1-3) 

Equation (1-1) implies  𝑝𝑔+1 =
∝𝑔

𝜇𝑔+1
𝑝𝑔 (1-4) 

From the relations (1-4) and (1-3), we get 

𝜇𝑔+2𝑝𝑔+2 = (∝𝑔+1+ 𝜇𝑔+1)
∝𝑔+1

𝜇𝑔+1
𝑝𝑔 −∝𝑔 𝑝𝑔 = ∝𝑔 𝑝𝑔 (

∝𝑔+1

𝜇𝑔+1
) ⇔ 𝑝𝑔+2 =

∝𝑔∝𝑔+1

𝜇𝑔+1𝜇𝑔+2
𝑝𝑔 (1-5) 

According to relations (1-5) and (1-2) and by induction, we have 

𝑝𝑁−1 =
∝𝑔∝𝑔+1…∝𝑁−2

𝜇𝑔+1𝜇𝑔+2…𝜇𝑁−1
𝑝𝑔 ⇒ 𝑝𝑁 =

∝𝑔∝𝑔+1…∝𝑁−1

𝜇𝑔+1𝜇𝑔+2…𝜇𝑁
𝑝𝑔 (1-6) 

According to the recurrence relation (1-6), we have 

 ∑ 𝑝𝑗

𝑁

𝑗=𝑔
= 𝑝𝑔 +

∝𝑔

𝜇𝑔+1

𝑝𝑔 + ⋯ +
∝𝑔∝𝑔+1 … ∝𝑁−2

𝜇𝑔+1𝜇𝑔+2 … 𝜇𝑁−1

𝑝𝑔 +
∝𝑔∝𝑔+1 … ∝𝑁−1

𝜇𝑔+1𝜇𝑔+2 … 𝜇𝑁

𝑝𝑔

= 𝑝𝑔 (1 +
∝𝑔

𝜇𝑔+1

+ ⋯ +
∝𝑔∝𝑔+1 … ∝𝑁−2

𝜇𝑔+1𝜇𝑔+2 … 𝜇𝑁−1

+
∝𝑔∝𝑔+1 … ∝𝑁−1

𝜇𝑔+1𝜇𝑔+2 … 𝜇𝑁

) 

⟹ 𝑝𝑔 =
∑ 𝑝𝑗

𝑁
𝑗=0

1 +
∝𝑔

𝜇𝑔+1
+ ⋯ +

∝𝑔∝𝑔+1 … ∝𝑁−2

𝜇𝑔+1𝜇𝑔+2 … 𝜇𝑁−1
+

∝𝑔∝𝑔+1 … ∝𝑁−1

𝜇𝑔+1𝜇𝑔+2 … 𝜇𝑁

 

As ∑ 𝑝𝑗
𝑁
𝑗=𝑔 = 1, then, 

𝑝𝑔 =
1

1 +
∝𝑔

𝜇𝑔+1
+ ⋯ +

∝𝑔∝𝑔+1 … ∝𝑁−2

𝜇𝑔+1𝜇𝑔+2 … 𝜇𝑁−1
+

∝𝑔∝𝑔+1 … ∝𝑁−1

𝜇𝑔+1𝜇𝑔+2 … 𝜇𝑁

 

And for everything 𝑔 < 𝑗 ≤ 𝑁, 

 𝑝𝑗 =
∝𝑔∝𝑔+1 … ∝𝑗−1

𝜇𝑔+1𝜇𝑔+2 … 𝜇𝑗

𝑝𝑔 =

∝𝑔∝𝑔+1 … ∝𝑗−1

𝜇𝑔+1𝜇𝑔+2 … 𝜇𝑗

1 +
∝𝑔

𝜇𝑔+1
+ ⋯ +

∝𝑔∝𝑔+1 … ∝𝑁−2

𝜇𝑔+1𝜇𝑔+2 … 𝜇𝑁−1
+

∝𝑔∝𝑔+1 … ∝𝑁−1

𝜇𝑔+1𝜇𝑔+2 … 𝜇𝑁

 

 

They are the limit values independent of the initial state, and therefore they are the components of the vector 

 𝑉 = (𝑝𝑗) (the stationary law of the Markov chain (𝐻𝑛)). 

For all  𝑛 ≥ 𝑛1, let be 𝜎𝑗 the population growth rate so that the state of the human population in years 

𝑛 + ∆𝑛 be equal to 𝑗 ∈ 𝐸, and let 𝜎𝑛+∆𝑛 be the estimated value of the population growth rate. Then, this 

rate follows the stationary probability distribution 𝑉 such that: 

𝜎𝑛+∆𝑛 = ∑ 𝜎𝑗. 𝑝𝑗

𝑗∈𝐸

 

 

4.1.2. Error calculation for the estimated values of  (𝑯𝒏) : 

It is known that for all  𝑛 ≥ 𝑛1, the estimated value of the size of the human population 𝑣(ℎ𝑛+∆𝑛) is determined 

by the relationship: 

𝑣(ℎ𝑛+∆𝑛) = (𝜎𝑛+∆𝑛 + 1) ℎ𝑛 

In this section, it is assumed that the rank of the initial year is  0 and for any rank 𝑛, we denote by 𝑣(ℎ𝑛) the 

estimated size and by  ℎ𝑛 the actual size of the human population, such as 𝑣(ℎ𝑛), ℎ𝑛 ∈ 𝐸. 

Given ℎ0, let be  𝜎 the estimated value of the population growth rate per year from rank 0 to rank 𝑛 (𝑛1 = 0). 

By definition, for all 𝑛 ≥ 0,  𝜎 =
𝑣(ℎ𝑛)−𝑣(ℎ𝑛−1)

𝑣(ℎ𝑛−1)
 ⇒ 𝑣(ℎ𝑛) = (1 + 𝜎)𝑣(ℎ𝑛−1), then (𝑣(ℎ𝑛)) is a geometric 

sequence with common ratio (1 + 𝜎) whose first term is 𝑣(ℎ0) = ℎ0. Thus, 𝑣(ℎ𝑛) = (𝜎 + 1)𝑛 ℎ0 

As 𝜎𝑛+∆𝑛 =
𝑣(ℎ𝑛)− ℎ0

 ℎ0
=

(𝜎+1)𝑛 ℎ0− ℎ0

 ℎ0
= (𝜎 + 1)𝑛 − 1 ⟹ 𝜎 = (𝜎𝑛+∆𝑛 + 1)1/𝑛 − 1 

Therefore, for all 𝑛 > 0, 𝑣(ℎ𝑛+1) = ((𝜎𝑛+∆𝑛 + 1)1/𝑛 − 1)𝑣(ℎ𝑛)  

Let 𝜀(ℎ𝑛) =  |𝑣(ℎ𝑛) − ℎ𝑛| therefore  𝜀(ℎ𝑛) characterize the errors of calculations on the estimated size of the 

human population for the year 𝑛. 

Let 𝑝 the rank of the current year, let's put 𝜀ℎ = max0<𝑛≤𝑝 {
𝜀(ℎ𝑛)

ℎ𝑛
}. Suppose if 0 ≤ 𝜀ℎ ≤ 0.025 (maximum error 

of 2.5% of the true population size), then, 𝜀(ℎ𝑛) is negligible compared to ℎ𝑛. 

 

In the sequel, we assume that for all 𝑛 > 0, the value of 𝜀(ℎ𝑛) is negligible compared to ℎ𝑛. Thus, for any rank 

𝑛 > 0,  ℎ𝑛 = 𝑣(ℎ𝑛) (we will use the estimated values of the size of the human population up to rank 2𝑝 such 

that ℎ0 is the initial size). 
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4-2. Area model  : 

Let  𝐹0 the initial size of the forest area. 

The zone model is a relationship that models the dynamics of the forest surface in interaction with the size of the 

human population: 

𝐹𝑛+1 = 𝐹𝑛 + 𝑅(ℎ𝑛) 

Where 𝐹𝑛 is the size of the forest area for the 𝑛-th year and  𝑅(ℎ𝑛) the residual area between the years 𝑛 and 

𝑛 + 1. 

4.2.1. Residual area: 

The residual area in  𝑛 − 𝑡ℎ years is characterized by parameters  (𝑟𝑛 , 𝜑𝑛 , 𝑒(ℎ𝑛), 𝜏𝑛) such as: 

𝑅(ℎ𝑛) = 𝜏𝑛𝑟𝑛 − 𝜑𝑛 − 𝑒(ℎ𝑛) where 

 𝑟𝑛  is the surface of the afforestation or reforestation carried out 

 𝜏𝑛  is the success rate of the afforestation or reforestation carried out 

 𝜑𝑛  is  the forest area destroyed by accidental or intentional fire 

 𝑒(ℎ𝑛) is the forest area exploited for daily needs 

According to this relationship, area 𝑒(ℎ𝑛)is the only parameter that depends on the size dynamics of the human 

population. 

 

4.2.2. Area  𝒆(𝒉𝒏) : 

Forest consumption by daily needs plays a big role in the study of forest dynamics. Thus, it is obvious that the 

consumption of wood in the rural area is quite different compared to the consumption of wood in the urban area. 

Let  𝜃(𝑟) and be 𝜃(𝑢) the average rates of the respective distribution of demography according to the rural zone 

and the urban zone. So ℎ𝑛 = 𝜃(𝑟)ℎ𝑛 + 𝜃(𝑢)ℎ𝑛 where 𝜃(𝑟) + 𝜃(𝑢) = 1. 
Let  𝑐𝑛(𝑟) and be 𝑐𝑛(𝑢) 𝑡he surface consumption of the forests of an individual in the 𝑛 − 𝑡ℎ year. Then, the 

area  𝑒(ℎ𝑛) is determined by the following relation: 

𝑒(ℎ𝑛) = [𝜃(𝑟)𝑐𝑛(𝑟) + 𝜃(𝑢)𝑐𝑛(𝑢)]ℎ𝑛 

In the event of a massive migration, the values of 𝜃(𝑢) and 𝜃(𝑟) can be modified according to the years. 

Therefore, the residual area is: 

𝑅(ℎ𝑛) = 𝜏𝑛𝑟𝑛 − 𝜑𝑛 − [𝜃(𝑟)𝑐𝑛(𝑟) + 𝜃(𝑢)𝑐𝑛(𝑢)]ℎ𝑛 

 

4.2.3. Estimation of 𝑭𝒏 by zone model 

Considering all these parameters, the zone model is given by the following recurrent sequence: 
𝐹1 = 𝐹0 + 𝑅(ℎ0), 𝑛 = 0

𝐹𝑛+1 = 𝐹𝑛 + 𝑅(ℎ𝑛),   𝑛 ≥ 1
 

There fore, 

{
𝐹1 = 𝐹0 + 𝜏0𝑟0 − 𝜑0 − [𝜃(𝑟)𝑐0(𝑟) + 𝜃(𝑢)𝑐0(𝑢)]ℎ0

𝐹𝑛+1 = 𝐹𝑛 + 𝜏𝑛𝑟𝑛 − 𝜑𝑛 − [𝜃(𝑟)𝑐𝑛(𝑟) + 𝜃(𝑢)𝑐𝑛(𝑢)]ℎ𝑛,   𝑛 ≥ 1
 

 

4.2.4. Error calculation for the estimated values of  𝑭𝒏 : 

We denote by 𝑣(𝐹𝑛) is the estimated value and by 𝐹𝑛 the actual size of the forest area if we start from the row  0 

up to the row 𝑛. 

Let 𝜀(𝐹𝑛) =  |𝑣(𝐹𝑛) − 𝐹𝑛| therefore 𝜀(𝐹𝑛) characterizes the calculation errors on the estimated value of the size 

of the forest area for the year 𝑛. 

Let 𝑝 the rank of the current year, let's put  𝜀𝐹 = max0<𝑛≤𝑝 {
𝜀(𝐹𝑛)

𝐹𝑛
}. Suppose if 0 ≤ 𝜀𝐹 ≤ 0.01 (maximum error 

of 1% of the actual size of the forest area), then, 𝜀(𝐹𝑛) is negligible compared to 𝐹𝑛. 

The zone model is not longer reliable as long as it 𝜀(𝐹𝑛) exceeds the reasonable value (𝜀𝐹 > 0.01), so 

predictions into the future are limited. 

 

In the sequel, we assume that for all 𝑛 ≥ 𝑝, the value of 𝜀(𝐹𝑛) is negligible compared to 𝐹𝑛. Thus, for any rank 

𝑛 ≥ 𝑝,  𝐹𝑛 = 𝑣(𝐹𝑛) (we will use the estimated values of of the forest area up to rank 2𝑝 such that 𝐹0 is the initial 

size). 

 

4-3. Reforestation trend and confidence interval: 

Let be 𝑝 the rank of the year that characterizes the present, in this section, we take 𝑛 ≥ 𝑝. Thus, 𝜀(𝐹𝑛) taking the 

values of 𝑣(𝜀(𝐹𝑛)) such that 𝐹𝑛 = 𝑣(𝐹𝑛) at 𝜀(𝐹𝑛) − 𝑐𝑙𝑜𝑠𝑒. 
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4-3.1. Forest condition trend: 

Definitions: between the interval [𝑛, 𝑛 + 1], we say that the trend of the forest condition is: 

 Stable when 𝐹𝑛+1 = 𝐹𝑛 

 Red when 𝐹𝑛+1 < 𝐹𝑛 

 Green when 𝐹𝑛+1 > 𝐹𝑛 

Properties: between the interval [𝑛, 𝑛 + 1] 
 The trend is stable if and only if 𝑅(ℎ𝑛) = 0 

 The trend is red if and only if 𝑅(ℎ𝑛) < 0 

 The trend is green if and only if 𝑅(ℎ𝑛) > 0 

 

4-3.2. Confidence interval of reforestation 

To avoid the red tendency in the (𝑛 + 1) − 𝑡ℎ year, it is necessary that 𝑅(ℎ𝑛) > 0, which is equivalent to  

𝜏𝑛𝑟𝑛 − 𝛿𝑛 > 0 where 𝛿𝑛 = 𝜑𝑛 + [𝜃(𝑟)𝑐𝑛(𝑟) + 𝜃(𝑢)𝑐𝑛(𝑢)]ℎ𝑛 

From where, it is necessary that  𝑟𝑛 >
𝛿𝑛

𝜏𝑛
 because 𝜏𝑛 > 0. 

To determine the limit of the reforestation area, it is necessary to look for a framework for  𝑟𝑛. 

Consider 𝑆𝑇  the total area of the area concerned and 𝑆(ℎ𝑛) = 𝑆𝑐 + 𝑠ℎ𝑛where 𝑆𝑐  is the area of cultivable areas 

(to be kept for food crops), 𝑠 the usual area to be kept for an individual's infrastructure and dwellings (this value 

is chosen arbitrarily). If 𝐹𝑛 the area of forest cover at row 𝑛, then the area available for afforestation or 

reforestation actions between rows 𝑛 and 𝑛 + 1 is the area 𝑆𝑅(𝑛 + 1) = 𝑆𝑇 − 𝑆(ℎ𝑛) − 𝐹𝑛 

However, so that the surface of the forest cover 𝐹𝑛+1 does not exceed the surface 𝑆𝑅(𝑛 + 1), then, it is necessary 

that 

𝐹𝑛+1 = 𝐹𝑛 + 𝑅(ℎ𝑛) <  𝑆𝑅(𝑛 + 1) 

⇔ 𝐹𝑛 + 𝜏𝑛𝑟𝑛 − 𝛿𝑛 <  𝑆𝑇 − 𝑆(ℎ𝑛) − 𝐹𝑛 

⟹ 𝜏𝑛𝑟𝑛 − 𝛿𝑛 <  𝑆𝑇 − 𝑆(ℎ𝑛) − 2𝐹𝑛 

⟹ 𝜏𝑛𝑟𝑛 <  𝑆𝑇 − 𝑆(ℎ𝑛) + 𝛿𝑛 − 2𝐹𝑛 , 𝜏𝑛 > 0 

⟹ 𝑟𝑛 <
𝑆𝑇 − 𝑆(ℎ𝑛) − 2𝐹𝑛 + 𝛿𝑛

𝜏𝑛

 

Let  𝜔(𝑛) =
𝑆𝑇−𝑆(ℎ𝑛)−2𝐹𝑛

𝜏𝑛
 and 𝜔𝑖𝑛𝑓(𝑛) =

𝛿𝑛

𝜏𝑛
, therefore 

𝜔𝑖𝑛𝑓(𝑛) < 𝑟𝑛 < 𝜔(𝑛) + 𝜔𝑖𝑛𝑓(𝑛) 

It should be known that if 𝜔(𝑛) > 0, the actions of reforestation continue  (𝑆𝑅(𝑛 + 1) > 𝐹𝑛) and if  

𝜔(𝑛) = 0 then, the actions stop (𝑆𝑅(𝑛 + 1) = 𝐹𝑛). So 𝜔(𝑛) is always positive or zero. 

On the other hand, if  𝜔(𝑛) < 𝜔𝑖𝑛𝑓(𝑛), by hypothesis 𝑟𝑛 > 𝜔𝑖𝑛𝑓(𝑛) > 𝜔(𝑛) ⟹ 𝜏𝑛𝑟𝑛 > 𝑆𝑅(𝑛 + 1) − 𝐹𝑛 

⟹ 𝐹𝑛 + 𝜏𝑛𝑟𝑛 > 𝑆𝑅(𝑛 + 1) ⟹ 𝐹𝑛+1 > 𝑆𝑅(𝑛 + 1) − 𝛿𝑛 ⟹ 𝐹𝑛+1 = 𝑆𝑅(𝑛 + 1) to 𝛿𝑛 − 𝑐𝑙𝑜𝑠𝑒. This result shows 

that if  𝜔(𝑛) < 𝜔𝑖𝑛𝑓(𝑛), then the area available for reforestation  𝑆𝑅(𝑛 + 1) is almost everywhere filled at 

𝛿𝑛 − 𝑐𝑙𝑜𝑠𝑒. In this case, to control the reforestation activities by protecting the surface 𝑆(ℎ𝑛), then it is 

preferable to reforest an area strictly less than 𝛿𝑛 or to interrupt the reforestation activities. 

Normally, in our objective, when we reforest, then its surface must be higher 𝜔𝑖𝑛𝑓(𝑛). Therefore, in the sequel, 

we consider this case as a negligible case. That is to say that throughout the sequel, we will take 

𝜔(𝑛) ≥ 𝜔𝑖𝑛𝑓(𝑛). 

As  𝑝 is the rank that characterizes the present, let 𝑑 > 𝑝 (𝑑 is the last rank for forecasting into the future) and 

let 
𝑛 ∈ {𝑝, 𝑝 + 1, … , 𝑑}. 

Since the value of the area 𝑆𝑇  is finite, the sequence (𝐹𝑛) is bounded and 𝜏𝑛 ≠ 0, then the sequence (𝜔(𝑛)) is 

bounded. 

We pose 𝜔𝑠𝑢𝑝(𝑛) =
min𝑘∈{𝑝,𝑝+1,…,𝑑}{𝜔(𝑘)}+𝜔𝑖𝑛𝑓(𝑛)

2(𝑑−𝑝+1)
. 

We know that whatever the values taken by 𝑟𝑛, so that the surface  𝑆𝑅(𝑛 + 1) to be always greater than or equal 

to the surface 𝐹𝑛+1, then: 

𝜔𝑖𝑛𝑓(𝑛) < 𝑟𝑛 ≤ 𝜔𝑠𝑢𝑝(𝑛) < 𝜔(𝑛) + 𝜔𝑖𝑛𝑓(𝑛) 

1
st
 case: We assume that (𝜔(𝑛)) is monotonous 

 If the sequence (𝜔(𝑛)) is increasing, then min𝑛∈{𝑝,𝑝+1,…,𝑑}{𝜔(𝑛)} = 𝜔(𝑝) 

⇒  ∀𝑛 ∈ {𝑝, 𝑝 + 1, … , 𝑑}, ∑ 𝑟𝑛

𝑑

𝑛=𝑝

≤ ∑ 𝜔𝑠𝑢𝑝(𝑛)

𝑑

𝑛=𝑝

=
1

2(𝑑 − 𝑝 + 1)
∑ (𝜔(𝑝) + 𝜔𝑖𝑛𝑓(𝑛))

𝑑

𝑛=𝑝
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⇒ ∑ 𝑟𝑛

𝑑

𝑛=𝑝

≤
1

2
𝜔(𝑝) +

1

2(𝑑 − 𝑝 + 1)
∑ 𝜔𝑖𝑛𝑓(𝑛)

𝑑

𝑛=𝑝

 

But 𝜔(𝑝) is the greatest lower bound of  (𝜔(𝑛)) and  ∀𝑛 ∈ {𝑝, 𝑝 + 1, … , 𝑑}, 𝜔(𝑛) ≥ 𝜔𝑖𝑛𝑓(𝑛), then 

  𝜔𝑖𝑛𝑓(𝑛) ≤ 𝜔(𝑝) 

⇒ ∑ 𝑟𝑛

𝑑

𝑛=𝑝

≤
1

2
𝜔(𝑝) +

1

2
𝜔(𝑝) = 𝜔(𝑝) < 𝜔(𝑑) + 𝜔𝑖𝑛𝑓(𝑑) 

 If the sequence (𝜔(𝑛)) is decreasing, then min𝑛∈{𝑝,𝑝+1,…,𝑑}{𝜔(𝑛)} = 𝜔(𝑑) 

⇒  ∀𝑛 ∈ {𝑝, 𝑝 + 1, … , 𝑑}, ∑ 𝑟𝑛

𝑑

𝑛=𝑝

≤ ∑ 𝜔𝑠𝑢𝑝(𝑛)

𝑑

𝑛=𝑝

=
1

2(𝑑 − 𝑝 + 1)
∑ (𝜔(𝑑) + 𝜔𝑖𝑛𝑓(𝑛))

𝑑

𝑛=𝑝

 

⇒ ∑ 𝑟𝑛

𝑑

𝑛=𝑝

≤
1

2
𝜔(𝑑) +

1

2(𝑑 − 𝑝 + 1)
∑ 𝜔𝑖𝑛𝑓(𝑛)

𝑑

𝑛=𝑝

 

But 𝜔(𝑑) is the greatest lower bound of (𝜔(𝑛)) and ∀𝑛 ∈ {𝑝, 𝑝 + 1, … , 𝑑}, 𝜔(𝑛) ≥ 𝜔𝑖𝑛𝑓(𝑛), then 

  𝜔𝑖𝑛𝑓(𝑛) ≤ 𝜔(𝑑) 

⇒ ∑ 𝑟𝑛

𝑑

𝑛=𝑝

≤
1

2
𝜔(𝑑) +

1

2
𝜔(𝑑) = 𝜔(𝑑) ≤ 𝜔(𝑑) + 𝜔𝑖𝑛𝑓(𝑑) 

2
nd 

case: Assuming that (𝜔(𝑛)) is not monotonous, as it is bounded, then there is always at least one rank 𝑛0 

between the ranks  𝑝and 𝑑 such that min𝑛∈{𝑝,𝑝+1,…,𝑑}{𝜔(𝑛)} = 𝜔(𝑛0). 

As in the previous cases, 𝜔𝑖𝑛𝑓(𝑑) ≤ 𝜔(𝑛0) < 𝜔(𝑑) 

⇒ ∑ 𝑟𝑛

𝑑

𝑛=𝑝

≤
1

2
𝜔(𝑛0) +

1

2
𝜔(𝑛0) = 𝜔(𝑛0) < 𝜔(𝑑) < 𝜔(𝑑) + 𝜔𝑖𝑛𝑓(𝑑) 

For this reason, in any case, if   𝜔𝑠𝑢𝑝(𝑛) =
min𝑛∈{𝑝,𝑝+1,…,𝑑}{𝜔(𝑛)}+𝜔𝑖𝑛𝑓(𝑛)

2(𝑑−𝑝+1)
, then 

∑ 𝑟𝑛

𝑑

𝑛=𝑝

≤ 𝜔(𝑑) + 𝜔𝑖𝑛𝑓(𝑑) ⇔ 𝜏𝑑 ∑ 𝑟𝑛

𝑑

𝑛=𝑝

+ 𝐹𝑑 − 𝛿𝑑 ≤ 𝑆𝑅(𝑑 + 1) 

As 𝐹𝑑+1 = ∑ 𝜏𝑛𝑟𝑛
𝑑
𝑛=𝑝 + 𝐹𝑑 − 𝛿𝑑, then 𝐹𝑑+1 ≤ 𝜏𝑑 ∑ 𝑟𝑛

𝑑
𝑛=𝑝 + 𝐹𝑑 − 𝛿𝑑 if and only if, for all 𝑛 ∈ {𝑝, 𝑝 + 1, … , 𝑑}, 

𝜏𝑛 ≤ 𝜏𝑑. 

So, to keep the surface 𝑆(ℎ𝑛), we must take 𝜏𝑑 = max𝑛∈{𝑝,𝑝+1,…,𝑑−1}{𝜏𝑛}. In this case, we have : 
𝐹𝑑+1 ≤ 𝑆𝑅(𝑑 + 1) 

This last relation means that if we take 𝜏𝑑 = max𝑛∈{𝑝,𝑝+1,…,𝑑−1}{𝜏𝑛} such that 𝜔𝑖𝑛𝑓(𝑛) < 𝑟𝑛 ≤ 𝜔𝑠𝑢𝑝(𝑛), then the 

area of reforested areas never exceeds the area of available areas as long as 𝑟𝑛 ∈]𝜔𝑖𝑛𝑓(𝑛); 𝜔𝑠𝑢𝑝(𝑛)[. 

To conclude, the confidence interval for reforestation is: 

ℐ(𝑛) =]𝜔𝑖𝑛𝑓(𝑛); 𝜔𝑠𝑢𝑝(𝑛)[ 

In other words, for all 𝑛 ∈ {𝑝, 𝑝 + 1, … , 𝑑}, 𝑟𝑛 ∈  ℐ(𝑛) means that up to rank 𝑑, the trend of the forest area is 

always stable or green such that the area  𝑆(ℎ𝑛) will be kept at  𝜀(𝐹𝑛) − 𝑐𝑙𝑜𝑠𝑒. 

 

4-3.3. Area Pattern Green Trend Range 

For all  𝑛 ∈ {𝑝, 𝑝 + 1, … , 𝑑}, either 𝜀 = max𝑛∈[𝑝,𝑑]{𝜀(𝐹𝑛)}. 

We suppose  
𝜔𝑚𝑖𝑛(𝑛)−𝜔𝑖𝑛𝑓(𝑛)

2
> 𝜀 (which is always possible because 𝜀 takes a small value) 

Let 𝜔𝑚𝑖𝑛(𝑛) = 𝜔𝑖𝑛𝑓(𝑛) + 𝜀 and 𝜔𝑚𝑎𝑥(𝑛) = 𝜔𝑠𝑢𝑝(𝑛) − 𝜀. 

Thus, the confidence interval of the green trend of the zone model is given by: 

ℐ𝜀(𝑛) = [𝜔𝑚𝑖𝑛(𝑛); 𝜔𝑚𝑎𝑥(𝑛)] 
In other words, for any  𝑛 ∈ {𝑝, 𝑝 + 1, … , 𝑑} such that 

 If the reforestation area   𝑟𝑛 = 𝜔𝑚𝑖𝑛(𝑛) then, the trend of the forest area is stable up to the rank 𝑑. 
 If the reforestation area   𝑟𝑛 > 𝜔𝑚𝑖𝑛(𝑛) then, the trend of the forest area is green up to rank  𝑑. 

In general, 𝑟𝑛 ∈ ℐ𝜀(𝑛) means that up to rank 𝑑, the trend of the forest surface is certainly green or at least stable 

(the surface 𝐹𝑝 will be at least preserved at rank 𝑑) of which the surfaces of food crops, dwellings and 

infrastructures are absolutely preserved. 

 

4-3.4. Confidence interval of an ideal reforestation area per year 
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In order to have a reasonable green tendency (so that the tendency is green and the surfaces 𝑆 are 𝑆(ℎ𝑛,) 

preserved), it is natural to think of the financial constraint on the plan of reforestation. Then it is necessary to 

find the interval of the ideal area of reforestation per year to set the annual budget for reforestation during the 

period 𝑑 − 𝑝. 

Either 𝑛 ∈ {𝑝, 𝑝 + 1, … , 𝑑} and either 𝜓(𝑛) =
𝜔𝑚𝑖𝑛(𝑛)+𝜔𝑚𝑎𝑥(𝑛)

2
. For all 𝑛 ∈ {𝑝, 𝑝 + 1, … , 𝑑}, if 𝑟𝑛 = 𝜓(𝑛), then 

the green trend is certain and the forest cover never exceeds the limit 𝑆𝑅(𝑛 + 1). Indeed, 𝜓(𝑛) characterizes the 

ideal areas of reforestation per year. 

For 𝑛 ∈ {𝑝, 𝑝 + 1, … , 𝑑}, the arithmetic mean  𝜓 =
∑ 𝜓(𝑛)𝑑

𝑛=𝑝

𝑑−𝑝+1
 is the ideal average area of reforestation per year. 

On a practical level, from this value we can set the annual budget necessary for the reasonable green trend to be 

certain. 

In reality, the budgetary means of the regions are different (depending on their country), therefore, it is 

necessary to find the means so that the trend is green. 

Given 𝜔𝑚𝑖𝑛 =
∑ 𝜔𝑚𝑖𝑛(𝑛)𝑑

𝑛=𝑝

𝑑−𝑝+1
 and  𝜔𝑚𝑎𝑥 =

∑ 𝜔𝑚𝑎𝑥(𝑛)𝑑
𝑛=𝑝

𝑑−𝑝+1
, then there are two possible cases (depending on the 

budgetary means) for setting the annual budget in order to guarantee the green trend: 

 

 Case of the region which does not manage to reach the annual budget for  𝝍 : 

In this case, it is necessary to take a value of area to be reforested (during the period  𝑑 − 𝑝) in the 

interval  [𝜔𝑚𝑖𝑛 , 𝜓[, that is to say that it is necessary to at least preserve the area  𝐹𝑝. Then the ideal reforestation 

interval for this region is [𝜔𝑚𝑖𝑛 , 𝜓[. 

When the surface  𝜔𝑚𝑖𝑛  is quite small compared to the surface 𝜓, it means that the surface of the areas to be 

reforested is vast. So, for all  𝑘 ≥ 2, such that 𝑘𝜔𝑚𝑖𝑛 ≤ 𝜓, we can take the interval  [𝜔𝑚𝑖𝑛 , 𝑘𝜔𝑚𝑖𝑛] as the ideal 

reforestation interval for the gradual green trend (virtually certain green trend). 

 

 Case of the region that manages to reach or exceed the annual budget for  𝝍 : 

In this case, preferably, it is recommended to take a value of area to be reforested (during the period  𝑑 − 𝑝) in 

the interval  [𝜓, 𝜔𝑚𝑎𝑥] and this is the ideal reforestation interval for this region. 

If the area of the areas to be reforested is large (𝜔𝑚𝑖𝑛 ≪ 𝜓), then for any  𝜒 > 0 such that 𝜓 − 𝜒 > 2𝜔𝑚𝑖𝑛, we 

can take the interval  [ 𝜓 − 𝜒, 𝜓 + 𝜒] as the ideal reforestation interval to guarantee the absolute green trend. 

 

V. CALCULATIONS, RESULTS AND INTERPRETATIONS: Case of the Haute Matsiatra region 

5-1. Estimated population growth rate 

In the Haute Matsiatra region, the birth rate varies from 24 to 37 per thousand, and the death rate varies from 9 

to 13 per thousand (source: MDG/ INSTAT-RGPH 2018). That is there are 14 birth rate possibilities between 

the interval of years [𝑛, 𝑛 + 1]. For the mortality rate of 9 to 13 per thousand, there are 5 possibilities between 

the year interval  [𝑛, 𝑛 + 1] (∆𝑛 = 1). Starting with the year 2000 (at rank 0) knowing that  

ℎ0 = 677743 (Source: MDG/ INSTAT-RGPH 2018), then there are 70 possible cases to obtain the value 

of  𝜎𝑗  such that 𝜎𝑗 ∈ {11,12,13, … ,27,28}. We denote respectively by  𝑥𝑗
(𝑘)

 and  𝑦𝑗
(𝑘)

the possible values of the 

birth and death rates to have  𝜎𝑗 such that 𝜎𝑗 = 𝑥𝑗
(𝑘)

− 𝑦𝑗
(𝑘)

 where 𝑘 = 1, … ,71. Since the birth rates are all 

greater than the maximum value of the death rate, then the smallest possible value of the population size (the 

smallest strictly positive integer in the state space 𝐸)  is the initial size ℎ0 = 𝑔 = 677743 (the trend is 

increasing). 

Let 𝑋 the random variable taking the values of 𝜎𝑗  and let 𝑝(𝑋 = 𝜎𝑗) the probability that the rate of population 

growth is equal to 𝜎𝑗. So  

𝑝(𝑋 = 𝜎𝑗) = Pr {ℎ1 = 𝑗/ℎ0 = 677743, ∝𝑗= 𝑥𝑗
(1)

, 𝜇𝑗 = 𝑦𝑗
(1)

𝑜𝑢 … 𝑜𝑢 ∝𝑗= 𝑥𝑗
(𝑘)

, 𝜇𝑗 = 𝑦𝑗
(𝑘)

} 

We know that  𝑝𝑗 = Pr {ℎ1 = 𝑗/ℎ0 =677743, ∝𝑗= 𝑥𝑗
(𝑘)

, 𝜇𝑗 = 𝑦𝑗
(𝑘)

} 

So, 

∑ 𝑝𝑗

𝑁

𝑗=𝑔

= ∑[ ∑ Pr{ℎ1 = 𝑗/ℎ0 = 677743, ∝𝑗= 𝑥𝑗
𝑘, 𝜇𝑗 = 𝑥𝑗

𝑘}

𝑘∈{1,…,71}

]

𝑁

𝑗=𝑔

 

 

Where 𝑁 the upper bound of the possible value of the population size and 𝑁 is finite. 

Let 𝐴 the set of all possible values of ℎ1, then, for all 𝑗 ∈ 𝐸, 
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𝑝𝑗 = {
𝑝(𝑋 = 𝜎𝑗) ≠ 0 𝑖𝑓 𝑗 ∈ 𝐴

0 𝑖𝑓 𝑗 ∉ 𝐴
 

We know that 

 

∑ 𝑝𝑗

𝑁

𝑗=𝑔

= ∑[ ∑ Pr{ℎ1 = 𝑗/ℎ0 = 677743, ∝𝑗= 𝑥𝑗
𝑘, 𝜇𝑗 = 𝑥𝑗

𝑘}

𝑘∈{1,…,70}

]

𝑁

𝑗=𝑔

 

According to calculations on Matlab, we have 

∑ 𝑝𝑗

𝑁

𝑗=677743

= ∑ 𝑝𝑗

696720

𝑗=677743

+ ∑ 𝑝𝑗

𝑁

𝑗=696721

 

The table 5-1-1 shows that the maximum possible value of the population growth rate is equal to 28 per 

thousand. So Pr{ℎ1 > 696720/ℎ𝑛 = 677743} = 0 

∑ 𝑝𝑗

𝑁

𝑗=677743

= ∑ 𝑝𝑗

𝑗∈𝐴

+ ∑ 𝑝𝑗

𝑗∉𝐴

= 𝑝677743 + ∑ 𝑝(𝑋 = 𝜎𝑗)

28

𝜎𝑗=11

 

According to the values obtained in this table, we have: 

∑ 𝑝𝑗

𝑁

𝑗=677743

= 1 

So the estimated population growth rate per year is 

𝜎𝑛+∆𝑛 = 𝜎𝑛+1 = 𝜎 = ∑ 𝜎𝑗𝑝(𝑋 = 𝜎𝑗)

28

𝜎𝑗=11

= 0.027732859066869, 𝑛 ≥ 0 

Figure 5-1-1 shows the curve of the actual size (blue curve) and the estimated size (green curve) of the 

population between 2000 and 2023 (source : https://fr.zhujiworld.com/mg/2855790-haute-matsiatra-

region/#details): 

 

 
Figure 5-1-1: Curve of the ℎ𝑛 and the 𝑣(ℎ𝑛), (n=0,…,23) ℎ0 = 677743 

 

According to this curve and the calculations on Matlab, we have the 5-1-2 curve which shows the ratio of errors 

compared to the real size of the population: 

 

Figure 5-1-2 : Curve of the 
𝜀(ℎ𝑛)

ℎ𝑛
, 0 ≤ 𝑛 ≤ 23 

https://fr.zhujiworld.com/mg/2855790-haute-matsiatra-region/#details
https://fr.zhujiworld.com/mg/2855790-haute-matsiatra-region/#details
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This curve shows that 0 < 𝜀ℎ < 0.025 (according to calculations on Matlab, 𝜀ℎ = max0<𝑛≤𝑝 {
𝜀(ℎ𝑛)

ℎ𝑛
} = 0.0203) 

then the margin of error is acceptable. 

Figure 5-1-3 shows the curve of the estimated size of  ℎ𝑛 between 2000 and 2056: 

 
Figure 5-1-3: Curve of the dynamics of the size of the human population between the year 2000 (n=0) and the 

year 2056 (n=56),ℎ0 = 677743  
5-2. Estimate of  𝑭𝒏based on 𝒉𝒏 

According to the report on the evolution of the cover of natural forests 1990-2000-2005 by the Ministry of the 

Environment, Forests and Tourism and the JIRIALA_2008 project, the forest area of the Haute Matsiatra region 

in 2000 is 59675 ha while 59453 in 2005. 

By exploiting the raw data of the monograph of the Haute Matsiatra region in 2014 (table 4, source 

BD/RSE/DREF-Haute Matsiatra, November 2011) and the report of the Director of Diversity Protection 

Raymond RAKOTONDRASOA of November 28, 2005 (Express de Madagascar), on average 

𝑟𝑛 = 82.133ℎ𝑎/𝑦𝑒𝑎𝑟, 𝜏𝑛 = 0.75 et 𝜑𝑛 = 15.45ℎ𝑎/𝑦𝑒𝑎𝑟. 

The following table 5-2-1 shows the results of surveys (in 2020) of wood consumers in the upper Matsiatra 

region: 

 

              Consumption/areas 

 

Wood requirements 

Average consumption/month in 

rural area 

Average consumption/month in the 

urban area 

Per household 

(4.9 

individuals) 

Dry wood/Per 

individual 

Per household 

(4.5 

individuals) 

Dry wood/Per 

individual 

Charcoal for cooking 3 bags of 50 

Kg=270Kg of 

dry wood 

55,102Kg 2.5 bags of 

50Kg = 225Kg 

of dry wood 

50Kg 

Dry wood for cooking (Kitay) 450Kg 91,837Kg 300Kg 66,667Kg 

Papers 3Kg 0.613Kg 3.5Kg 0.778Kg 

Others 1.5Kg 0.306 3Kg 0.668Kg 

The following table 5-2-2 shows the distribution of individuals who use charcoal and dry wood: 

 

Daily energy source Charcoal Dry wood (Kitay) 

Rural population 80% 20% 

Urban population 90% 10% 

 

Knowing that the consumption of  wood per person concerns charcoal, dry  wood for cooking, paper and others, 

that is  𝑎𝑟 the consumption of wood by one person per month in rural areas (respectively 𝑎𝑢 in urban areas). 

Using the data from Tables 5-2-3 and 5-2-3, we have: 
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 𝑎𝑟 = (
80

100
. 91,837 +

20

100
. 55,102 + 0,613 + 0,306) 12 = 1024.9Kg/individual/year 

𝑎𝑢 = (
90

100
× 50 +

10

100
× 66.667 + 0.778 + 0.668) 12 = 637.3524 Kg/individual/year 

According to the report on data collection and analysis for sustainable forest management (reference: joining 

national and international efforts EC-FAO partnership program (1998-2002)/Budget line tropical forest B7-

6201/97-15/ VIII/FOR PROJET GCP/INT/679/EC/Revue/ avril 1999), on average, a dry wood weighs 350Kg 

and a wood occupies on average 1m² of surface. 

According to this standard, table 5-2-3 shows the results of calculations on the different types of wood 

consumption per person per year, according to their localities: 

 

Areas Consumption 

Kg/individual/year 

Area (in m²) of forest 

/individual/year 

Forest area (in ha) 

/individual/year 

Rural 1024.9 2.928286 0.0002928286 

Urban 777.3552 2.221015 0.0002221015 

 

According to the PRD-HM-2016 version, on average, 19% of the population of the Haute Matsiatra region is in 

the urban area, of which 81% is in the rural area. Figure 5-2-1 shows the curve of the estimated size of 

 𝐹𝑛 between 2000 and 2056: 

 

 
Figure 5-2-1: Curve of the dynamics of the forest area between the year 2000 (n=0) and the year 2056 (n=56),  

𝐹0 = 59675 ℎ𝑎 (Source: MDG/ INSTAT-RGPH 2018) 

 

The following figure 5-2-2 shows the curve of the dynamics of  𝐹𝑛 population growth in the Haute Matsiatra 

region (according to the curve in Figure 5-1-3): 

 

 
Figure 5-2-2: Curve of the dynamics of the forest surface according to the size of the human population between 

the year 2000 (n=0) and the year 2056 (n=56) 
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This curve shows that in 2056, the size of the human population is estimated at 3135874 and the forest reserve 

will be at 37984 ha. 

Thus, it can be said that the growth in the size of the human population can lead to a rapid degradation of forest 

resources as long as the rate of reforestation is not yet rectified. 

 

5-3. Confidence intervals: 

The total area of the Haute Matsiatra region is  𝑆𝑇 = 2088000ℎ𝑎and the cultivable area is 

𝑆𝑐 = 503905ℎ𝑎 (source: agricultural statistics service/DPEE/MIN AGRI, Madagascar). We assume that  
𝑠 = 0.05 ℎ𝑎/𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢, then  𝑆(ℎ𝑛) = 503905 + 0.05ℎ𝑛. 

Because of the insufficiency of reliable data concerning the evolution of the size of the forest surface of the 

Haute Matsiatra region (since the year 2000), we are obliged to carry out the calculations of errors from the real 

size of the forest area in 2005, which is equal to 59453 ha (Source: JERIALA 

project/2008/mg_mef_monographie-region-haute-matsiatra_2014). 

 

According to calculations on Matlab, we have 𝑣(𝐹5) = 58904.984. So  𝜀 = 548.016ℎ𝑎 and  
𝜀𝐹 = 0.00923 < 0.01. Thus, we can say that the margin of error is acceptable. 

We have 𝑣(𝐹22) = 𝐹22 = 55126.554ℎ𝑎 (estimated size of forest area in 2022). 

Let  𝑝 = 22 (year 2022) and  𝑑 = 50 (year 2050). The following figure 5-3-1 shows the curves of the minimum 

reforestation areas: 

 

 
Figure5-3-1: curves of 𝜔𝑖𝑛𝑓(𝑛) and 𝜔𝑚𝑖𝑛(𝑛),  𝑠 = 0.05ℎ𝑎 and  𝜀 = 548.016ℎ𝑎 

The red curve indicates the pace of  𝜔𝑖𝑛𝑓(𝑛)while the blue curve is that of  𝜔𝑚𝑖𝑛(𝑛). 

 

This curve shows that in 2050 (𝑛 = 50), the minimum reforestation area for conservation is 1425ha. That is to 

say that population growth requires major reforestation efforts. 

Thus, to preserve at least the forest area  𝐹22 = 55126.554ℎ𝑎 until 2050, then we must follow the pace of 

reforestation of the blue curve. In the event of financial difficulty (on the budgetary level), it is necessary to 

remain above the red curve to avoid the red trend. 

The following figure 5-3-2 shows variation of the sequence  (𝜔(𝑛)) and its minimum value: 
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Figure 5-3-2: curve of  (𝜔(𝑛)), 𝑠 = 0.05ℎ𝑎 and 𝜀 = 548.016ℎ𝑎 

This curve shows that the sequence (𝜔(𝑛)) is decreasing such that  min
𝑛∈{22,23,,…,50}

{𝜔(𝑛)} = 1822519.815ℎ𝑎 

and max
𝑛∈{22,24,…,50}

{𝜔𝑖𝑛𝑓(𝑛)} + 𝜀 = 985.2 ℎ𝑎 + 548.016 ℎ𝑎 = 1533.216ℎ𝑎. 

So for everything 𝑛 ∈ {22,24, … ,50}, 𝜔𝑖𝑛𝑓(𝑛) < 𝜔(𝑛). Thus, 𝜔𝑠𝑢𝑝(𝑛) =
1822519.815+𝜔𝑖𝑛𝑓(𝑛)

58
. 

The following figure 5-3-3 shows variation of the sequence  𝑆𝑅(𝑛 + 1) : 
 

 
Figure 5-3-3: curves of  𝑆𝑅(𝑛 + 1),  𝑠 = 0.05ℎ𝑎and 𝜀 = 548.016ℎ𝑎 

 

This curve shows that the sequence (𝑆𝑅(𝑛 + 1)) which characterizes the area of available reforestation is 

decreasing such that the area available in 2051 is  𝑆𝑅(51) = 1409963ℎ𝑎 while the area available in 2023 

is 𝑆𝑅(23) = 1467110 ℎ𝑎. That is to say that population growth constantly reduces the surface area of 

reforestation areas. Despite forest degradation, this result shows that if the size of the population increases, then 

the needs for housing and infrastructure also increase and that is why this phenomenon is quite natural. 

The following figure 5-3-4 shows the curve of maximum reforestation areas  𝜔𝑚𝑎𝑥(𝑛): 

 

 
Figure 5-3-4: curves 𝜔𝑚𝑎𝑥(𝑛),  𝑠 = 0.05ℎ𝑎 and 𝜀 = 548.016ℎ𝑎 

 

This curve shows that in 2050 (𝑛 = 50), the maximum reforestation area per year for the reasonable green trend 

increases to 31009.127ha while 31000.442ha in 2022. The latter shows that forest degradation due to population 

growth requires a gradual increase in efforts on reforestation activities. 

 

According to the calculations on Matlab, if the reforestation plan takes the reforestation limit values 𝜔𝑠𝑢𝑝(𝑛), 

then  ∑ 𝑟𝑛
50
𝑛=22 = 880876ℎ𝑎, as 𝑆𝑅(51) = 1409963ℎ𝑎. So, ∑ 𝑟𝑛

50
𝑛=22 < 𝑆𝑅(51)and the latter shows that the area 

of reforested areas between 2022 and 2050 never exceeds the area available for reforestation between 2050 and 

2051. 

 

The following figure 5-3-5 shows shows the curve of ideal reforestation areas (for the certain green trend): 
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Figure 5-3-5: curve of  𝜓(𝑛), 𝑠 = 0.05ℎ𝑎 and 𝜀 = 548.016ℎ𝑎 

To guarantee the reasonable and certain green trend in 2050, then it is necessary to follow the neighborhoods of 

the shape of this curve and it represents the shape of the ideal reforestation surface. 

 

5-4. Confidence interval of the ideal reforestation area for the Haute Matsiatra region 

According to the calculations,  𝜔𝑚𝑖𝑛 = 1104.178ℎ𝑎, 𝜔𝑚𝑎𝑥 = 29935.161ℎ𝑎 and 𝜓 = 15519.67ℎ𝑎. 

In Madagascar, it is difficult for the State to have a lot of funding for reforestation actions because of poverty. 

Moreover, the reforestation of  29935.161ℎ𝑎 a year in a poor country like Madagascar is an almost impossible 

mission. On the other hand, this value shows that the region is vast and still exploitable despite population 

growth. 

So, at the moment, the most logical option for the Haute Matsiatra region is to surpass or at least retain the forest 

cover of 55126.554ℎ𝑎 (in 2022). Thus, to preserve the latter until 2050, it is necessary to reforest exactly 

 1104.178ℎ𝑎 per year between 2022 and 2050. 

As 𝜔𝑚𝑖𝑛 is quite small in relation  𝜓 (the area of the areas to be reforested is vast), and as the region is 

considered as regions in financial difficulty (because according to the PRD/HM_2014, only 170ha is the 

reforested area of the region between 2010 and 2011). 

In this simulation, we choose  𝑘 = 2 to have at least a progressive green trend and according to the calculations 

on Matlab, the confidence interval of the ideal reforestation for the Haute Matsiatra region is 

[𝜔𝑚𝑖𝑛 , 2𝜔𝑚𝑖𝑛] = [1104.178,2208.356] (𝑖𝑛 ℎ𝑎) 

For the choice 𝑘 = 2, the following figure 5-4-1 shows the appearance of the reforestation confidence intervals, 

which suits the current situation of the Haute Matsiatra region: 

 

 
Figure5-4-1: the shapes of the reforestation confidence intervals, k=2 𝜔𝑖𝑛𝑓(𝑛) the red curve, 

𝜔𝑚𝑖𝑛(𝑛) 𝑙𝑎 𝑐𝑜𝑢𝑟𝑏𝑒 𝑏𝑙𝑒𝑢and  2𝜔𝑚𝑖𝑛(𝑛)the green curve 

 

Thus, in the case of the Haute Matsiatra region, to avoid the red trend, in terms of reforestation, it is better to 

stay above the red curve. On the other hand, to have a progressive green trend, it is recommended to stay in the 

section between the blue curve and the green curve. 

 

VI. CONCLUSION 

To conclude, the results on the evolution of the forest area according to the dynamics of the human population 

show that population growth accelerates forest degradation and the conservation of forest resources has become 
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a complex task. On the other hand, the results of the case of the Haute Matsiatra region can be used as decision-

making tools for forest management in the face of population growth. Despite the region's financial problem and 

population growth, with this new approach, it is always possible to find the right decision to take thanks to the 

use of the confidence interval of the ideal reforestation area. In particular, for the Haute Matsiatra region, it is 

necessary to reforest at least 1104.178ℎ𝑎  per year to guarantee the conservation of the forest cover 

55126.554ℎ𝑎 and the progressive green trend between the years 2022 and 2050. In general, given the 

population growth and whatever the economic problems and financial, it is still possible to gradually restore the 

parts ravaged by fire and by mining operations. To end this article, we propose as a perspective, the case study 

of Madagascar. 
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