
Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4966 www.ijariie.com 5721

Design of an Optimal Data Placement Strategy

in Hadoop Environment

Shah Dhairya Vipulkumar
1
, Saket Swarndeep

2

1
 PG Scholar, Computer Engineering, L.J.I.E.T., Gujarat, India

2
Assistant Professor, Dept. of Computer Engineering, L.J.I.E.T., Gujarat, India

ABSTRACT
The MapReduce framework has gained wide popularity as a scalable distributed system environment for efficient

processing of large scale data of the order of Terabytes or more. Hadoop, an open source implementation of

MapReduce coupled with Hadoop Distributed File System, is widely applied to support cluster computing jobs

requiring low response time. The current Hadoop implementation assumes that nodes in the cluster are homogenous

in nature. Data placement and locality has not been taken into account for launching speculative processing tasks.

Furthermore, every node in the cluster is assumed to have same CPU and memory capacity despite some of the

nodes being configured using vastly varying generation of hardware. Unfortunately, both the homogeneity and data

placement assumptions in Hadoop are optimistic at best and unachievable at worst, potentially introducing

performance problems in Hadoop clusters at data centres. This dissertation explores the Hadoop data placement

policy in detail and proposes a modified data placement approach that increases the performance of the overall

system. Also, the idea of placing data across the cluster according to the processing capacity utilization of the nodes

is presented, which will improve the workload processing in Hadoop environment. This is expected to reduce the

response times for the applications in large-scale Hadoop clusters.

Keyword: - Hadoop, Data Placement, Data-Locality, Distributed Computing, Big Data, Cloud Computing.

1. INTRODUCTION

We live in a world that is driven by Data. Data intensive applications are on the rise. Since the communication

paradigm of the Internet is sufficiently open and powerful, the World Wide Web, in the past decade or so, has been

adopted as the ideal platform for developing data intensive applications. Data intensive applications like data mining

and web indexing need to access ever expanding data sets ranging from a few gigabytes to several terabytes or even

petabytes. Google, for example leverages the MapReduce model to process approximately twenty petabytes of data

per day in a parallel scenario. The MapReduce programming framework can simplify the complexity by running

parallel data processing functions across multiple computing nodes in a cluster as scalable MapReduce helps

programmers to distribute programs across nodes as they as executed in parallel. MapReduce automatically gathers

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4966 www.ijariie.com 5722

results from the multiple nodes and returns a single result or set. More importantly, MapReduce platforms offer fault

tolerance that is entirely transparent to programmers. This makes MapReduce a practical and attractive

programming model for parallel data processing in high performance cluster computing environments.

Apache Hadoop is an open-source software framework used for distributed storage and processing of very

large data sets. It consists of computer clusters built from commodity hardware. All the modules in Hadoop are

designed with a fundamental assumption that hardware failures are a common occurrence and should be

automatically handled by the framework.

Figure 1. Hadoop Multi-Node Cluster Architecture

The core of Apache Hadoop consists of a storage part, known as Hadoop Distributed File System (HDFS), and a

processing part called MapReduce. Hadoop splits files into large blocks and distributes them across nodes in a

cluster. It then transfers packaged code into nodes to process the data parallelly. This approach takes advantage

of data locality – nodes manipulating the data they have access to – to allow the dataset to be processed faster and

more efficiently than it would be in a more conventional supercomputer architecture that relies on a parallel file

system where computation and data are distributed via high-speed networking.

The default Hadoop implementation assumes that the computing nodes are heterogeneous in nature. Moreover,

the input size data blocks are split into equal sized data blocks with a given value, and are allocated to nodes for

processing. This strategy works well in homogeneous cluster. But it performs poorly in heterogeneous clusters

because of the heterogeneity (in terms of processing, memory, throughput, I/O, etc.) of the nodes capabilities to

process as well the considering the fact that Big-data is also heterogeneous and complex, there is considerable

difference in the performance of nodes to process the data.

Hadoop assumes that the computing capacity of each node in a cluster is the same. In such a homogeneous

environment, each node is assigned to the same load, and thus it can fully use the resources in the cluster. There

would not be many nodes that are idle or overloaded. However, in real-world applications, clusters are often worked

in a heterogeneous environment [research papers]. In such a cluster, there is likely to be various specifications of

PCs or servers, which causes the abilities of the nodes to differ. If such a heterogeneous environment still uses the

original Hadoop strategy that distributes data blocks into each node equally and the load is also evenly distributed to

each node, then the overall performance of Hadoop may be reduced.

https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Clustered_file_system
https://en.wikipedia.org/wiki/Data_set
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Commodity_hardware
https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS
https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/JAR_(file_format)
https://en.wikipedia.org/wiki/Data_locality
https://en.wikipedia.org/wiki/Distributed_processing
https://en.wikipedia.org/wiki/Supercomputer_architecture
https://en.wikipedia.org/wiki/Parallel_file_system
https://en.wikipedia.org/wiki/Parallel_file_system

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4966 www.ijariie.com 5723

2. RELATED WORK

[1] Suhas V. Ambade, Prof. Priya R. Deshpande have proposed "Heterogeneity-based files placement in Hadoop

cluster"

This paper proposes a data placement method based on complexity of the input file. But this is not optimal

for intensive large-scale processing in clusters. Authors have proposed format specific data distribution amongst the

nodes by using computational power of each node. They have Proposed Customized Block Placement policy. At the

time of writing data, the DataNodes are selected based on the complexity of data and computation power of each

node. Complexity will be dependent on the file type. According to the type or complexity of input file, the

DataNode is selected to place the file. The Max CPU MHz is considered as the computational power of node for

placing the file.

[2] Chia-Wei Lee, Kuang-Yu Hsieh, Sun-YuanK Hsieh, Hung-Chang Hsiao have proposed "A Dynamic Data

Placement Strategy for Hadoop in Heterogeneous Environments"

Here, the authors have proposed Dynamic Data Placement strategy. Data placement algorithm to resolve

the unbalanced node workload problem. Dynamically adapt and balance data stored in each node based on the

computing capacity of each node in a heterogeneous Hadoop cluster.

[3] Jia-xuan WU, Chang-sheng ZHANG, Bin ZHANG, Peng WANG have proposed “A New Data-Grouping Aware

Dynamic Data Placement Method that Take into Account Jobs Execute Frequency for Hadoop”

In this paper, the authors have proposed a new Data-Grouping-Aware Dynamic (DGAD) data placement

method based on the job execution frequency. Firstly, a job access correlation relation model is built among the data

blocks according to the relationships provided by the records about historical data block access. Then BEA

clustering algorithm is used to divide data blocks into clusters according to the job access correlation relation model

among the data blocks. These correlated data blocks within a cluster are put on different nodes.

[4] B Ganesh Babu, Shabeera T P, Madhu Kumar S D have proposed "Dynamic Colocation Algorithm for Hadoop

In this paper, the authors have proposed Dynamic Colocation Algorithm. Algorithm based on combinations of all

datasets, for efficient data placement. According to the authors, in real time, one task may require many datasets for

execution and one dataset may also be accessed by many tasks. In their strategy, they try to keep these datasets in

one DataNode or nearby DataNodes, so that when tasks were scheduled to this DataNode, most if not all of the data

they need to execute the task are stored locally.

[5] Vrushali Ubarhande, Alina-Madalina Popescu, Horacio Gonzalez-Velez have proposed "Novel Data-Distribution

Technique for Hadoop in Heterogeneous Cloud Environments"

In this paper, the authors have proposed the distribution of data blocks within the Hadoop cluster based on

the computing capability of each slave node. First, a Speed Analyzer component is created on NameNode, and

installed an executed on each slave node. The master node reads the response time taken by each slave node from

the respective log file, and then creates a file with the computing ratio. This file is fed to the Data Distribution

component through the Hadoop Distributed File System. Speed Analyzer agent is created to measure the processing

capacity of each slave node.

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4966 www.ijariie.com 5724

A. Comparative Analysis

Sr.

No.

Paper Title Methods/

Techniques

Advantages Limitations

1. Heterogeneity-based

files placement in

Hadoop cluster

Customized format

specific Placement

Policy/ Modified

Hadoop

File format specific

intelligent Data Placement

Simple file format specific

data placement is not

optimal approach for

intensive processing in

large-scale clusters

2. A Dynamic Data

Placement Strategy for

Hadoop in

Heterogeneous

Environments

Dynamic Data

Placement (DDP),

Computing Capacity

based Placement

Can dynamically adapt and

balance data stored in each

node based on the

computing capacity of each

node, reduce execution

time, improve Hadoop

performance

Dynamic placement might

induce run-time processing

skew.

3. A New Data-Grouping-

Aware Dynamic Data

Placement Method that

Take into Account

Jobs Execute Frequency

for Hadoop

Data-Grouping Aware

Dynamic Placement

(DGAD), Clustering

based Data

Placement, Bond

Energy Algorithm

(BEA), Clustered

Matrix

Improves Hadoop

performance considerably

Inefficient utilization of

cluster resources

4. Dynamic Colocation

Algorithm for Hadoop

Dynamic Colocation

Algorithm

Better than BEA as it

doesn’t need extra step for

creating combinations of

datasets

Inefficient use of cluster

resources

5. Novel Data-Distribution

Technique for Hadoop

in Heterogeneous Cloud

Environments

Speed Analyzer,

Processing Capability

based Distribution

Understands processing

capability and assigns data

block as per processing

speed

Straggler node issue

Table 1. Literature Comparison

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4966 www.ijariie.com 5725

3. PROPOSED WORK

A. Proposed System Architecture

Figure 2. Proposed System Architecture

Resource Manager: Resource Manager will be responsible for managing the resources like CPU and memory. The

Data Placement module will be integrated with YARN Resource Manager. The Resource Manager will keep health

check of the DataNodes by pinging onto the Agent module of DataNodes after a fixed time interval.

Agent: The agent will respond to the ping from the Resource Manager with the health check information of the

DataNodes. Also, it will forward the CPU and memory details to the Resource Manager.

DataNode Profiler: This will maintain and keep the DataNode information from the Resource Manager updated. It

will do DataNode profiling based on the CPU usage of the nodes.

Priority Queue: This Queue will keep the profiled DataNode information in a sorted manner. The information from

this queue will be fed to the Data Placement module in the Resource Manager which will be responsible for optimal

data placement.

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4966 www.ijariie.com 5726

B. Proposed Flow for Choosing the Target DataNode

Figure 3: Target DataNode Chooser Execution Flow

C. Data Placement Strategy

Phase 1: Computing the CPU consumption of nodes and creating priority queue

We integrate a CPU consumption computing into the Resource Manager (RM). This module will take

care of computing the CPU consumption of the nodes in percentage (%). This process will be taken care

by the DataNode profiler module. The data from this module will be fed to the YARN Resource Manager.

The Data Placement module integrated into YARN RM will create a priority queue and maintain and

update it from time to time. This priority queue will be clubbed with the YARN RM to make data

distribution decisions in the next phase.

Phase 2: Distributing the data based on the priority queue

The RM will identify nodes as either under-utilized or over-utilized. It is obvious that we should place

less data blocks on the over-utilized nodes and more data blocks on the under-utilized nodes. We will

balance the loads and hence create a dynamic data balancing approach by moving the data from heavily

consumed nodes to the lightly consumed nodes. This will be done by moving the input file fragments

from the Source node which will fall in the over-utilized category to the Destination node which will fall

in the under-utilized category. This data distribution will be taken care by the Data Placement module in

the Resource Manager. More workloads will be given to the DataNodes with lower CPU usage and less or

no workload will be given to the DataNodes with higher CPU usage.

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4966 www.ijariie.com 5727

4. ENVIRONMENT SETUP AND IMPLEMENTATION

A multi-node Hadoop cluster was created over the Windows Azure cloud. For that, we created 3 virtual machines

with Ubuntu 12.04 OS. A virtual network was created among the master and slave nodes. On top of it, we installed

Hadoop 2.6.0. One node would act as a NameNode and one DataNode was created on all the nodes respectively. On

master node, we have NameNode and DataNode processes running. While on the slave nodes, we have DataNode

process running.

Figure 4. Creating Ubuntu Server on Virtual Machine

The above image depicts the creation of Ubuntu servers on the VMs using Windows Azure cloud service.

Figure 5. One Master and Two Slave Nodes

The above image depicts that for our experimental purpose, we have created one master and two slave nodes.

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4966 www.ijariie.com 5728

Figure 6. Daemons Running on the Master and Slave Nodes

The above image depicts the various daemon processes running on the master and slave nodes. The processes

include ResourceManager, NameNode, Secondary NameNode, NodeManager, and DataNode.

Figure 7. Hadoop Dashboard

The above image depicts how Hadoop Dashboard looks when we access the IP at which our host runs.

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4966 www.ijariie.com 5729

Figure 8. Fetching the CPU Usage Percentage and Creating a Sorted Queue

The above image depicts the output after Fetching the CPU Usage Percentage and Creating a Sorted Queue. This

will be fed to the Resource Manager for making correct data placement according to our strategy.

5. PERFORMANCE EVALUATION

A. Evaluation Parameters

1. Execution Time/Response Time of the Application

Response Time = Job Completion Time – Job Submission Time (in seconds)

2. Size of The Input Data

This refers to the size of the input file used for testing purpose.

B. Performance Evaluation of the Proposed System

For the evaluation purpose, we ran two sample applications – WordCount MapReduce MapReduce

job. The test was performed on two sizes of input file – 512 MB and 1024 MB respectively. WordCount

job was performed for the same files. And then the results of the execution time taken by default Hadoop

and proposed solution were compared.

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4966 www.ijariie.com 5730

The observed execution times for sample MapReduce job are as under:

Method Used WordCount Execution Time for

512 MB Data Size

Default Hadoop 117 seconds

Proposed Solution 115 seconds

Table 2: WordCount job Execution Time for 512 MB Data Size

Method Used WordCount Execution Time for

1024 MB Data Size

Default Hadoop 212 seconds

Proposed Solution 207 seconds

Table 3: WordCount job Execution Time for 1024 MB Data Size

As it is evident form the table, we observed a reasonable difference in the execution times

between the default approach and the proposed approach in Hadoop.

Figure 9: Execution Times for the WordCount job for Default Hadoop and the Proposed Solution

The proposed solution enhanced the response time of the job as clearly seen from the graph. It reduced

the execution time by 1.71% for the 512 MB size input data and 2.359% for 1024 MB size input data. The

evaluation was performed on a cluster of 4 nodes. Still it yielded notable enhancement in the response

time of the jobs and improved the overall performance of the Hadoop cluster. This tends to imply that it

could possibly bring considerable improvement of the Hadoop cluster by efficiently utilizing resources on

large-scale Hadoop clusters. The proposed approach not just betters the performance but also resolves the

straggler node issue as straggler nodes are not utilized due to their slow or poor performance.

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4966 www.ijariie.com 5731

6. CONCLUSION AND FUTURE WORK

This dissertation work presents an optimal data placement strategy in Hadoop environment. It describes a

proper data placement design for Hadoop clusters. This dissertation explores the Hadoop data placement

policy in detail and proposes a modified data placement approach that increases the performance of the

overall system. The idea of placing data across the cluster according to the utilization of the nodes

resources is presented, which will enhance the job execution/response times and improving the overall

Hadoop cluster performance by efficient utilization of resources. The proposed solution fairly considers

each node’s resources and distributes the data based on their utilization. The new data placement strategy

could bring reasonable improvements in large-scale Hadoop clusters. In future, the proposed work

remains to be tested over a larger number of nodes to find out the true potential of the new system.

7. REFERENCES

[1] Suhas V. Ambade, Prof. Priya R. Deshpande, “Heterogeneity-based files placement in Hadoop cluster”,

2015 IEEE, Pages: 876 - 880, DOI: 10.1109/CICN.2015.325

[2] C.-W. Lee et al., A Dynamic Data Placement Strategy for Hadoop in Heterogeneous Environments, Big

Data Research (2014), http://dx.doi.org/10.1016/j.bdr.2014.07.002

[3] Jia-xuan Wu, Chang-sheng Zhang, Bin Zhang, Peng Wang, A New Data-Grouping-Aware Dynamic Data

Placement Method that Take into Account Jobs Execute Frequency for Hadoop, Microprocessors and

Microsystems (2016), DOI: 10.1016/j.micpro.2016.07.011.

[4] B Ganesh Babu, Shabeera T P, Madhu Kumar S D, “Dynamic Colocation Algorithm for Hadoop”, 2014

IEEE, Pages: 2643 – 2647, DOI: 10.1109/ICACCI.2014.6968384

[5] Vrushali Ubarhande, Alina-Madalina Popescu, Horacio Gonzalez-Velez, “Novel Data-Distribution

Technique for Hadoop in Heterogeneous Cloud Environments”, 2015 IEEE, Pages: 217 - 224 DOI

10.1109/CISIS.2015.37

[6] Jiong Xie, Shu Yin, Xiaojun Ruan, Zhiyang Ding, Yun Tian, James Majors, Adam Manzanares, and Xiao

Qin, “Improving MapReduce Performance through Data Placement in Heterogeneous Hadoop Clusters”,

2010 IEEE, Pages: 1 – 9, DOI: 10.1109/IPDPSW.2010.5470880

[7] Yuanquan Fan, Weiguo Wu, Haijun Cao, Huo Zhu, Xu Zhao, Wei Wei, “A heterogeneity-aware data

distribution and rebalance method in Hadoop cluster”, 2012 IEEE, Pages: 176 – 181, DOI

10.1109/ChinaGrid.2012.22

[8] Stephen Kaisler, Frank Armour, J. Alberto Espinosa, William Money, “Big Data: Issues and Challenges

Moving Forward”, 2012 IEEE, Pages: 995 – 1004, DOI 10.1109/HICSS.2013.645

[9] Jun Wang, Qiangju Xiao, Jiangling Yin, and Pengju Shang, “DRAW: A New Data-gRouping-AWare Data

Placement Scheme for Data Intensive Applications with Interest Locality”, 2013 IEEE, Pages: 2514 –

2520, DOI: 10.1109/TMAG.2013.2251613

[10] Hellerstein, Joe (9 November 2008). "Parallel Programming in the Age of Big Data". Gigaom Blog

[11] Segaran, Toby; Hammerbacher, Jeff (2009). Beautiful Data: The Stories Behind Elegant Data

Solutions. O'Reilly Media. p. 257. ISBN 978-0-596-15711-1

[12] The Apache Software Foundation. Hadoop. http://hadoop.apache.org

[13] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.

Commun. ACM, 51(1):107–113, 2008.

[14] New Horizons for a Data-Driven Economy – Springer, doi:10.1007/978-3-319-21569-3.

[15] The World's Technological Capacity to Store, Communicate, and Compute

Information". MartinHilbert.net.

[16] JASON. 2008. “Data Analysis Challenges”, The Mitre Corporation, McLean, VA, JSR-08-142

[17] “Welcome to Apache Hadoop!". hadoop.apache.org

[18] "What is the Hadoop Distributed File System (HDFS)?". ibm.com. IBM

[19] Malak, Michael (2014-09-19). "Data Locality: HPC vs. Hadoop vs. Spark". datascienceassn.org.

Data Science Association

http://link.springer.com/10.1007/978-3-319-21569-3
https://en.wikipedia.org/wiki/Digital_object_identifier

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4966 www.ijariie.com 5732

[20] Yu Tang; Abdulhay, E.; Aihua Fan; Sheng Su; Gebreselassie, K., "Multi-file queries performance

improvement through data placement in Hadoop", Computer Science and Network Technology

(ICCSNT), 2012 2nd International Conference on, vol., no., pp.986,991, 29-31 Dec. 2012
[21] https://dzone.com/articles/how-hadoop-mapreduce-works, Accessed: 23/11/2016, 4:40 PM

[22] http://www.slideshare.net/xqin74/performance-issues-on-hadoop-clusters, Accessed: 23/11/2016, 3:50 PM

[23] HDFS Architecture: http://hadoop.apache.org/docs/r1.2.1/images/hdfsarchitecture.gif

[24] Wiley “Hadoop for Dummies” By Dirk deRoos, Paul C. Zikopoulos, Roman B. Melnyk, Bruce Brown,

Rafael Coss

