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Abstract 

Monitoring stress levels has turn out to be a critical part of healthcare structures for physical and mental 

illnesses. Continuous stress tracking might help users better understand their stress patterns and offer 

physicians with greater dependable information for interventions.  However, current stress tracking structures 

have did not acquire private information in an ordinary context. The contemporary country of sensor era 

permits us to broaden structures measuring the physiological signals, which replicate stress with the aid of 

using wearable devices. Therefore, we advise a stress tracking device that offers a goal each day healthcare 

primarily based totally on private physiological signals: electrocardiogram (ECG), photo plethysmogram 

(PPG), and galvanic skin response (GSR). We use the wearable devices, Shimmer3 ECG, Shimmer3 GSR and 

Empatica E4 Wristband, to monitor stress ubiquitously. We carry out managed stress experiments on sixteen 

members and the device effectively detects stress with 92.55% accuracy for 10-fold cross-validation and 83.61% 

accuracy for subject-wise cross-validation. In everyday settings, the device assesses stress with 82.12% 

accuracy. We also examine whether movement artifacts have an affect on stress assessment. 

Keywords - Mental stress, electrocardiogram, galvanic skin response, physical activity, heart rate variability, 

support vector machine, stress classifier. 

 

1.INTRODUCTION 

Stress at work has become a serious problem affecting many people of different professions, life 

situations, and age groups. The workplace has changed dramatically due to globalization of the economy, use of 

new information and communications technologies, growing diversity in the workplace, and increased mental 

workload. In the 2000 European Working Conditions Survey (EWCS) [9], work-related stress was found to be 

the second most common work-related health problem across the EU. 62% of Americans say work has a 

significant impact on stress levels. 54% of employees are concerned about health problems caused by stress. 

One in four employees has taken a mental health day off from work to cope with stress. 

Stress can contribute to illness directly, through its physiological effects, or indirectly, through 

maladaptive health behaviors (for example, smoking, poor eating habits or lack of sleep) [2]. It is important to 

motivate people to adjust their behavior and life style and start using appropriate stress coping strategies. So that 

they achieve a better stress balance far before increased level of stress results in serious health problems.  

The avoidance of stress in the everyday working environment is impossible. Still, if people are 

informed of their stress levels, they become empowered for taking some preemptive actions in order to alleviate 

stress [10].There are a number of factors that are likely to cause stress at work including but not limited to long 

work hours, work overload, time pressure, difficult, demanding or complex tasks, high responsibility, lack of 

breaks, conflicts, under promotion, lack of training, job insecurity, lack of variety, and poor physical work 

conditions (limited space, inconvenient temperature, limited or inappropriate lighting conditions) [7].  
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We aim at the automation of the identification of the stress causes of an employee in question, as well 

as the identification of the common causes of stress for employees within an organization. Figure 1 shows the 

main ideas of our approach: We aim at making stress and stressors visible by (1) keeping track of the calendar 

events and daily routine of the worker, (2) measuring stress-related physiological signs from the sensor data, (3) 

annotating these events with the sensor data and the results of automated analysis of additional information 

sources, such as sentiment classification of the incoming and outgoing e-mails or social media messages and 

explicit user feedback, (4) extracting the relationship between event data and sensor data, i.e. relations between 

the increases and decreases in the stress level with the characteristics of the events of daily lives (what, where, 

when, with whom, etc.), and (5) using extracted knowledge about this relationship for personalized coaching.  

 

Fig.1 Reaction to stress factors is governed by the autonomous nervous system 

 

In order to find this relationship, a number of subtasks need to be done. One of the main subtasks is 

detecting stress from the sensor data. Due to modern ICT and sensor technologies, objective measuring of the 

stress level in on lab settings becomes possible. Such symptoms as voice, heart rate, galvanic skin response 

(GSR) and facial expressions are known to be highly correlated with the level of stress a person experience 

[1,3]. In this paper we focus on the use of the GSR data (reflecting sweating) measured by a prototype device 

worn at a wrist.  

The direct use of the GSR measurements obtained is not that straightforward. Partly this is caused by noise and 

inaccuracies in the collected sensor data, but what is more crucial – the reaction to various stress factors is 

governed by the autonomous nervous system and this “path” to the symptomatic system is shared with a lot of 

other mechanisms, such as the mechanism of adaption to the outside temperature and humidity. We have 

conducted a pilot case study aimed at the identification of likely challenges we need to address to make our 

approach work in practice. In this paper, we focus only on the problem of detecting changes in the stress level 

from the GSR sensor data alone. We study the peculiarities of noise and disturbances in the signal and argue the 

need of the related contextual data for improving the quality of stress detection.  

The rest of this paper is organized as follows. In below, we formulate the problem of stress 

identification and categorization from the sensor data stream mining perspective.  

We focus on a sub problem of arousal identification in online settings, which we formulate as a drift 

detection task. We highlight the major problems of dealing with GSR data, collected from a watch-style stress 

measurement device in normal (i.e. in non-lab) settings, and propose simple approaches how to deal with them. 

In Section III we present the results and lessons learnt from the conducted experimental study on real GSR data 

collected during the recent pilot field study. Finally in Section IV we give conclusions and discuss directions for 

further work.  

2.STRESS IDENTIFICATION 

Stress comes in three flavors:  
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 Acute: stress caused by an acute short-term stress factor.  

 Episodic acute: acute stress that occurs more frequently and/or periodically.   

 Chronic: stress caused by long-term stress factors and can be very harmful in long run.  

Most people experience acute stress during their everyday life. It is a primal flight-or-fight response to 

immediate stress factors and is not considered harmful. When the frequency of these occurrences increase, 

physiological symptoms might occur. This type of stress is associated with a very busy and chaotic life and can 

be considered to be harmful when it occurs over prolonged periods of time. The last type of stress, chronic, is 

considered to be the most harmful. Prolonged periods of stress could be caused by personal circumstances or 

other long-term factors.  

In our work, we want to prevent people from transferring to the chronic category and therefore, we 

target the acute and episodic acute stress. Particularly, in this paper we focus on the identification of acute stress 

in order to facilitate coaching of the episodic acute stress.  

 

2.1 Background  

The autonomic nervous system (ANS) regulates the body’s major physiological activities, including the 

heart’s electrical activity, gland secretion, blood pressure, and respiration. The ANS has two branches: the 

sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS). The SNS mobilizes the 

body’s resources for action under stressful conditions. In contrast to the SNS, the PNS relaxes the body and 

stabilizes the body into steady state.  

2.2 Heart Rate Variability (HRV) and Stress  

Under acute stress, the SNS increases heart rate, respiration activity, sweat gland activity, etc. After the 

stress has passed, the PNS reverses the stress response [11]. Since the ANS controls the heart, measuring cardiac 

activity is an ideal, noninvasive means for evaluating the state of the ANS. An ECG is a recorded tracing of the 

electrical activity generated by the heart.  

Figure 2 shows a P wave, a QRS complex, and a T wave in the ECG. The P wave represents atrial 

depolarization, the QRS represents ventricular depolarization, and the T wave reflects the rapid repolarization of 

the ventricles [5]. The R-R interval is the time interval between two R peaks and is used to calculate heart rate. 

 

Fig. 2. Electrocardiogram sample 

2.3 Heart rate variability (HRV)  

Heart rate variability refers to the beat-to-beat variation in the R-R interval. HRV analysis can be 

categorized into time-domain and spectral-domain analysis.  

Several time-domain parameters include:  
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 mean HR: mean heart rate (beats per minute) 

 mean RR: mean heartbeat interval (ms) 

 SDNN: standard deviation of RR-intervals between normal beats  

 RMSSD: root mean square of the difference between successive RR-intervals and  

 pNN50: the percentage of heartbeat intervals with a difference in successive heartbeat intervals greater 

than 50 ms. Three widely used components can be found in HRV power spectrum: 

 LF (0.04-0.15 Hz): a low-frequency component that is mediated by both the SNS and PNS  

 HF (0.15-0.4Hz): a high-frequency component mediated by the PNS and  

 LF/HF: LF to HF ratio that is used as an index of autonomic balance.  

2.4 Galvanic Skin Response (GSR) and Stress  

GSR is a measure of the electrical resistance of the skin. A transient increase in skin conductance is 

proportional to sweat secretion [4]. When an individual is under mental stress, sweat gland activity is activated 

and increases skin conductance. Since the sweat glands are also controlled by the SNS, skin conductance acts as 

an indicator for sympathetic activation due to the stress reaction. The hands and feet, where the density of sweat 

glands is highest, are usually used to measure GSR. There are two major components for GSR analysis. Skin 

conductance level (SCL) is a slowly changing part of the GSR signal, and it can be computed as the mean value 

of skin conductance over a window of data. A fast changing part of the GSR signal is called skin conductance 

response (SCR), which occurs in relation to a single stimulus. Widely used parameters for GSR include the 

amplitude and latency of SCR and average SCL value. 

3.METHODOLOGY 

Our stress monitoring system provides an assessment of stress levels using three main physiological 

signs: ECG, PPG, GSR. Our research has been conducted in two different settings: controlled setting and 

everyday setting. To find a correlation between stress and physiological signals, we perform offline laboratory-

based stress tests to collect bio-signals from wearable devices. We then process the raw signals to extract 

features, build predictive models using these features, and find the relationship between each feature and stress. 

We assume that stress is labeled in binary: whether each participant is stressed or not. Figure 3 shows the 

process overview in a controlled setting. Figure 3a shows the training process to build a predictive stress model. 

Figure 3b shows the inference process to find the relationship between each feature and stress by the stress 

model 
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Fig.3 Process overview in the controlled setting 

We also collect physiological signals in an everyday setting through wearable devices to find daily 

stress levels. With everyday data, we perform feature extraction and prediction using the models trained in the 

controlled setting to get personal stress levels. Figure 4 shows the process overview in the everyday setting. 

 

Fig.4 process overview in the everyday setting 

3.1 Wireless Sensor Network  

We used the SHIMMER platform developed by Intel’s Digital Health Group. SHIMMER is a small 

wireless sensor platform with an integrated 3-axis accelerometer designed to support wearable applications. We 

also used SHIMMER’s ECG and GSR daughter boards for data acquisition. The sensor data from the ECG 

sensor and accelerometer were sampled at 100 Hz, and the data from the GSR sensor were sampled at 32 Hz. 

Data were transmitted to a PC via Bluetooth connectivity and saved to binary and comma-separated value files. 

We used three sensor nodes for the wireless sensor network configuration. The ECG sensor node was strapped 

to an elastic chest belt and three electrodes were placed on the body to form lead II and lead III1 recording 

configurations. The GSR sensor was attached on a wrist band. Then, skin conductance was measured at the base 

of two fingers by measuring the electrical current that flowed as a result of applying a constant voltage. 

3.2 Feature Selection  

Using all features is not necessarily helpful as they may not help in increasing accuracy. If a feature is 

not related to stress, having it among related features may increase noise [12]. Computing some loosely 

correlated features may also not be useful because of the computational complexity. For instance, frequency 

domain and independent features have non-linear computational complexity. Especially in local 

implementations in Internet-of-Things [13,14] based systems, these overheads are considerable. Thus, we decide 

to select features that are more correlated to stress. In order to find the best subset of features, we adopt a greedy 

stepwise method [15]. This method starts from an empty set. It adds features that increase accuracy and removes 

features that decrease it. We continue doing these two steps until we reach a set of features in which adding no 

new feature or removing any selected feature can increase accuracy. To evaluate the accuracy of each subset, we 

use a 5-nearest-neighbor classifier, correlation-based feature selection method, and information gain. Based on 

this method, the features are shown in Table 1 in bold are selected.  

TABLE 1  

EXTRACTED FEATURES FROM SENSORS, SELECTED FEATURES IN BOLD 

 

 

3.3 Machine Learning based Classification  
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The bias of physiological data can vary by using personal data sets or general data sets [16]. Personal 

data sets contain data collected from the same person (within), and general data sets contain data from other 

subjects (between). In order to test the efficiency of our classifier, we test it in both cases. We use several 

machine learning based classification algorithms such as K-nearest neighbor (kNN) with k {1, 3, 5, 7, 9}, 

support vector machine (SVM), and Naive Bayes classifier. kNN is a method that uses k nearest data-points and 

does a majority vote to predict the result [17]. SVM finds hyper-planes to divide data-points into different 

classes [18]. We used the Weka implementation of LIBSVM [19]. Naive Bayes classifiers predict the result 

based on the probabilities of each feature’s probabilistic knowledge [20]. Naive Bayes classifiers act differently 

based on the distribution of data-points [21]. 

4.RESULTS AND DISCUSSION 

In this section, we present our experimental results in the controlled and everyday settings. First, we 

validate our developed stress models using three different classification algorithms (i.e., kNN, SVM, and Naive 

Bayes). We test whether the classifiers generalize across data-points as well as across subjects. We then apply 

the classifier on everyday data to predict stress, observe and study the contextual factors affecting the results, 

and analyze techniques to mitigate them. We use everyday self-report stress label as ground truth (i.e., reference 

point). We also collect context data (e.g., running, walking, eating, etc.) to evaluate the effect of noise such as 

motion artifacts on the decisions in everyday settings. To examine how a combination of features affects stress 

detection accuracy, we create four groups of bio-signals: GSR+PPG+ECG, GSR+PPG, GSR+ECG, and only 

PPG. The rationale to study the PPG only case is the fact that this is the most dominant, cost-effective, and 

convenient method used in wearable such as smart bands, watches, and rings, making it the most feasible 

monitoring method for everyday settings. 

4.1 Stress Assessment in a Controlled Setting  

To objectively assess the stress in a controlled setting, we build a stress model using different 

classifiers (kNN, SVM, and Naive Bayes). We conducted two different sets of experiments: i) with all features, 

and ii) with selected features (presented in Section 4.5). In addition, we analyze the data from two different 

perspectives: data-points vs. subjects. In the data-points view, we treat the data points similarly regardless of the 

participant they were collected from whereas in the subject wise analysis, we group each individual’s data.  

 

Fig.5 Controlled setting stress assessment accuracy of the different classifiers using the different number of 

features 

 

 

4.2 Stress Assessment in the Everyday Setting  

We predict the stress level in the everyday setting through the stress model. We split everyday data into 

minutes, extract the features, and run them through the stress model. To get an accuracy of everyday stress 

prediction, we use a binary self-described stress level as ground truth. Participants report their self-assessment of 

stress level every 30 minutes. Since we have the stress model from the controlled setting, we use a majority vote 
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to prevent an unstable prediction for data-points due to its inherent noise cancellation property [22]. We use 

two-third majority to consider a prediction reliable. 

 

Fig.6 Everyday stress assessment accuracy of the different classifiers using the different number of features 

I. CONCLUSION 

Previous mental stress investigations were conducted in the laboratory with sedentary subjects. 

However, the controlled setting in a laboratory is not suitable for mobile mental stress monitoring because 

physical activity affects the measured physiological signals. The main aim of this investigation was to determine 

whether activity information can compensate for the interactive effects of intellectual pressure and physical 

activity, which affect the accuracy of intellectual pressure detection. We proposed a pressure tracking device 

that turned into examined for everyday pressure evaluation. We designed, implemented, and analyzed the device 

offering not only high accuracy pressure detection in the controlled setting but also affordable predictions in the 

everyday setting. We performed controlled pressure evaluation experiments on 17 contributors and everyday 

setting tracking on 1 volunteer. Our results demonstrate 94.55% accuracy within side the generalized version for 

pressure detection at the same time as displaying 83.61% accuracy when the classifier generalizes throughout 

subjects. The accuracy of the device within side the setting is 82.12%. Our device is compared against 

associated research in terms of the sensors used, accuracy in the generalized version, check units, check period, 

and check activities. 
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