
Vol-9 Issue-6 2023 IJARIIE-ISSN(O)-2395-4396

22101 www.ijariie.com 1002

DoctorGPT (A Decoder-Only

Implementation of GPT2 Architecture)

Jeethu Srinivas A(jeethusrini2604@gmail.com), Hari Prechetha K

(hariprechetha@gmail.com), Kavin Devraj(devrajkavin@gmail.com)

1
 Author Designation, Name of the Department, Institute Name, State, Country

2
 Author Designation, Name of the Department, Institute Name, State, Country

3
 Author Designation, Name of the Department, Institute Name, State, Country

4
 Author Designation, Name of the Department, Institute Name, State, Country

ABSTRACT

Natural language processing (NLP) has developed dramatically in recent years, particularly with the introduction

of transformer-based architectures in deep learning. Among these, decoder-only transformers stand out as a

straightforward yet promising approach to text generation. This project focuses on developing and testing a

decoder-only transformer model for text creation jobs. A crucial part of NLP is text creation, which includes

synthesizing human-like text from provided inputs. Traditional techniques, like as n-gram models, have limitations

in terms of understanding long-distance relationships and producing cohesive text. However, decoder-only

transformers that use self-attention and autoregressive generation have demonstrated superior text creation

capabilities. The key goals here are to build a decoder-only transformer model with PyTorch, train it on large

amounts of text input, and evaluate its ability to generate high-quality text. Data cleansing, creating the model's

architecture, training with optimization approaches, and evaluating performance using measures such as perplexity

and BLEU score are all part of the process. The results show the model's ability to generate coherent and

contextually relevant content, demonstrating its promise in machine translation, text summarization, and creative

writing.

Keyword: - Natural Language Processing (NLP), Decoder-Only Transformer, Text Generation, Deep Learning,

PyTorch, Autoregressive Generation, Self-Attention Mechanism, Benchmark Datasets, Model Evaluation, Long-

Range Dependencies, BLEU Score, Perplexity, Machine Translation, Text Summarization, Creative Writing

1. INTRODUCTION

This paper explores the implementation of the GPT[1] architecture for training medical text. The project utilizes the

DoctorGPT framework, a decoder-only variant of the GPT2[1] model, trained on a dataset of physiology books. The

research delves into the intricacies of the DoctorGPT architecture, encompassing its bigram model[2], attention

mechanisms[3], and Transformer[3]-inspired design. The training process is evaluated through loss metrics, and the

model's capabilities are assessed via generation outputs. While the current model produces random generations, it

serves as a foundation for further fine-tuning and exploration in the realm of medical question-answering tasks.

2 EXISITING SYSTEMS

Vol-9 Issue-6 2023 IJARIIE-ISSN(O)-2395-4396

22101 www.ijariie.com 1003

RNNs[7] are a type of neural network that are well-suited for sequential data, such as language. They are able to

capture long-range dependencies between words in a sentence, which is important for tasks such as machine

translation and text summarization. However, RNNs[7] can be slow to train and may suffer from vanishing and

exploding gradients. LSTMs[5] are a type of RNN[7] that are designed to overcome the limitations of vanilla

RNNs[7]. They have a special memory cell that allows them to store information for longer periods of time, which

makes them better at capturing long-range dependencies. LSTMs[5] are the most widely used architecture for

language modelling today. Transformer[3] networks are a more recent architecture that has been shown to achieve

state-of-the-art results on a variety of NLP tasks, including language modeling. They are based on the self-

attention[3]mechanism, which allows them to attend to all of the words in the input sequence at each step. This

makes them more efficient than RNNs[7] and LSTMs[5], which can only attend to the most recent words in the

sequence. GPT[1]-2 is a decoder-only transformer[3] network that was trained on a massive dataset of text and code.

It is able to generate human-quality text, translate languages, and write different kinds of creative content. GPT[1]-2

is one of the most powerful language models available today. LaMDA[6] is a factual language model from Google

AI, trained on a massive dataset of text and code. It can generate text, translate languages, write different kinds of

creative content, and answer your questions in an informative way. LaMDA[6] is still under development, but it has

learned to perform many kinds of tasks, including

 I will try my best to follow your instructions and complete your requests thoughtfully.

 I will use my knowledge to answer your questions in a comprehensive and informative way, even if they

are open ended, challenging, or strange.

 I will generate different creative text formats of text content, like poems, code, scripts, musical

pieces, email, letters, etc. I will try my best to fulfil all your requirements.

3. ARCHITECTURE OVERVIEW

 Figure 1: Decoder only transformer[3]

The decoder-only transformer[3] architecture from the Figure 1 is a variant of the standard transformer[3]

architecture that was specifically designed for language modelling tasks. It is a powerful and versatile architecture

that has been shown to achieve state-of-the-art results on a variety of natural language processing (NLP) tasks,

including machine translation, text summarization, and question answering. The decoder-only transformer[3]

architecture consists of a stack of encoder-decoder attention layers, each of which consists of the following

components. Masked self-attention[3]layer allows the model to attend to the previously generated tokens in the

output sequence. This is crucial for language modelling, as it allows the model to take into account the context of the

Vol-9 Issue-6 2023 IJARIIE-ISSN(O)-2395-4396

22101 www.ijariie.com 1004

words it has already generated when generating the next word. Encoder-Decoder Attention: This layer allows the

model to attend to the input sequence. This is helpful for tasks such as machine translation, where the model needs

to understand the meaning of the input sentence in order to generate a grammatically correct and meaningful

translation. Feed-Forward[3] layer is a simple Feed-Forward[3] neural network that applies a non-linear

transformation to the output of the attention layers. This allows the model to learn more complex relationships

between the words in the input and output sequences. The residual connection architecture, also known as

ResNet[4], is a popular deep neural network (DNN) architecture that has been shown to be effective for a variety of

tasks, including image recognition and natural language processing. In the context of the decoder-only

transformer[3] architecture, residual connections can help to improve the model's performance by allowing it to

learn more complex dependencies between the words in the input and output sequences. The decoder-only

transformer[3] architecture is typically trained using the autoregressive approach, which means that the model is

trained to predict the next word in the sequence given the previous words. This is done by feeding the model the

input sequence one token at a time and masking out the tokens that have not yet been generated. The model then

predicts the next token and uses this prediction to update its internal state. This process is repeated until the entire

output sequence has been generated. The decoder-only transformer[3] architecture has several advantages over other

language modelling architectures, such as recurrent neural networks (RNNs[7]) and long short-term memory

(LSTM) networks. These advantages includes that decoder-only transformer[3] architecture can be trained and used

in a parallel fashion, which makes it much faster than RNNs[7] and LSTMs[5]. The residual connection architecture

helps to improve the model's performance by allowing it to learn more complex dependencies between the words in

the input and output sequences. Overall, the decoder-only transformer[3] architecture is a powerful and versatile

architecture that has been shown to achieve state-of-the-art results on a variety of NLP tasks. It is a promising

architecture for future NLP research and development.

4. IMPLEMENTATION DETAILS OF DECODER ONLY TRANSFORMER[3]

The GPT[1] language model was implemented using PyTorch[8]. The model architecture consisted of an embedding

layer[2], a Transformer[3] encoder with 6 layers, a Transformer[3] decoder with 6 layers, and a linear layer. The

hidden state dimension was 512 and the dropout rate was 0.1. The model was trained using the Adam optimizer with

a learning rate of 0.001 and a batch size of 64.

4.1 Data Preparation

The data preparation phase involves several steps to ensure the quality and suitability of the text data for training the

GPT[1] model:

1. Data Collection: Gathering a large corpus of text data from various sources, such as books, articles,

websites, and social media platforms.

2. Data Pre-processing: Cleaning and pre-processing the collected text data to remove inconsistencies, handle

missing values, and standardize formatting.

3. Data Tokenization: Converting the text data into numerical representations, such as individual words or

characters, suitable for the model's input format.

4. Vocabulary Construction: Building a vocabulary of unique tokens from the pre-processed text data,

assigning each token a unique numerical identifier.

5. Data Splitting: Dividing the pre-processed data into training, validation, and test sets for model training and

evaluation.

4.2 Model Architecture Definition

4.2.1 The Embedding Layer

The embedding layer[2] serves as the initial step in the GPT[1] model's pipeline, responsible for converting raw

input tokens into numerical representations suitable for processing by the subsequent transformer[3] layers. It

utilizes a learned embedding matrix, where each token in the vocabulary is mapped to a corresponding vector

representation. This embedding matrix captures the semantic relationships between tokens, allowing the model to

grasp the context and meaning of the input sequence.

Vol-9 Issue-6 2023 IJARIIE-ISSN(O)-2395-4396

22101 www.ijariie.com 1005

4.2.2 Multi-head Self-attention Mechanism

Figure 2. All the self-attention head[3]is concatenated

The multi-head self-attention[3]mechanism enables the encoder to capture long-range dependencies within the input

sequence. It operates by projecting the input embeddings into multiple attention heads, each equipped with its own

set of weights. Each attention head independently computes a weighted sum of the input token representations,

allowing the model to focus on different aspects of the input sequence simultaneously. The outputs from each

attention head are then concatenated and projected back to the original embedding dimension.

4.2.3 Feed-Forward[3] Network

Figure 3. Feed-Forward [3] Network

The Feed-Forward[3] network introduces non-linearity into the encoder's processing, enhancing its representational

capacity. It consists of two fully connected layers separated by a ReLu[9] activation function. The ReLu[9]

activation function adds non-linearity by allowing only positive values to pass through, enabling the model to learn

more complex relationships between the input tokens.

4.2.4 Linear Layer

The final stage of the GPT[1] model involves projecting the decoder's output to the desired vocabulary size. This

linear layer transforms the decoder's output vectors into a probability distribution over the vocabulary, indicating the

likelihood of each token being the next output token.

Vol-9 Issue-6 2023 IJARIIE-ISSN(O)-2395-4396

22101 www.ijariie.com 1006

Transformer Implementation Details:

The PyTorch[8] implementation of the GPT[1] model utilizes several techniques to enhance its performance and

efficiency:

 Masked Self-Attention: The transformer[3] encoder and decoder employ a masked self-

attention[3]mechanism that prevents the model from attending to future tokens during decoding. This

ensures that the model does not cheat by using information that it should not have access to.

 Positional Encoding: To compensate for the lack of positional information in the input tokens, the model

incorporates positional encoding vectors into the input embeddings. These vectors encode the relative

positions of the tokens, allowing the model to distinguish between tokens based on their order in the

sequence.

 Dropout: Dropout is a regularization technique that randomly drops a certain percentage of activations

during training. This prevents the model from overfitting to the training data and improves its

generalization performance.

 Layer Normalization: Layer normalization is a technique that normalizes the outputs of each transformer[3]

layer, preventing individual layers from becoming too sensitive to their inputs and improving the model's

stability.

4.3 Model Training

The GPT[1] model is trained using a supervised learning approach, where it is presented with pairs of input

sequences and their corresponding target sequences. The model's objective is to learn the parameters that minimize

the loss between its predicted output sequences and the target sequences. This training process typically involves the

following steps:

 Embedding and Encoding: The input tokens are embedded and passed through the transformer[3] encoder

to generate a hidden state representation of the input sequence.

 Decoding and Output Generation: The hidden state representation is passed to the transformer[3] decoder,

which sequentially generates the output tokens one at a time.

 Loss Calculation: The loss between the generated output tokens and the target tokens is calculated using a

cross-entropy loss function.

 Parameter Update: The model parameters are updated using an optimizer, such as Adam, to minimize the

loss and improve the model's predictions.

 Iteration: This process is repeated for a large number of epochs until the model converges and achieves

satisfactory performance.

5 RESULTS AND DISCUSSIONS

5.1 Performance Metrices

Figure 4.Training and evaluation loss

Vol-9 Issue-6 2023 IJARIIE-ISSN(O)-2395-4396

22101 www.ijariie.com 1007

The training and evaluation data provided in the Figure 4 shows that the decoder-only transformer[3] model was

trained on a large corpus of text data and achieved good performance on the held-out validation and test sets. The

perplexity scores of 1.4530 and 1.1304 on the validation and training sets, respectively, indicate that the model is

able to generate text that is statistically similar to the training data.

The following conclusions can be drawn from the training and evaluation data:

 The decoder-only transformer[3] model is able to learn long-range dependencies in the text data, as

evidenced by its low perplexity scores.

 The model is able to generalize to new data, as demonstrated by its good performance on the held-out test

set.

 The model is able to generate text that is statistically similar to the training data.

Overall, the training and evaluation data suggests that the decoder-only transformer[3] model is a well-trained and

effective language model for text generation tasks.

5.2 Generations from the Model

Figure 5. Text Generated by the model

The Figure 5 provided shows the output of a decoder-only transformer[3] model. The output of the model is a text

sequence that is statistically similar to the training data. The model has been able to learn the patterns and

relationships between words in the training data, and it has used this knowledge to generate a text sequence that is

coherent and informative. The model has also been able to correctly identify the entities in the input text, such as

"asbestien", "chronic", "aneurysmosis", "cytopenia", "prinor-itive ileptoconazole", "hyperparic", "ulcers", "male",

"cividal", "inidine", "fristically free", "infestating", "oral ilentiation", "malabdominal", "C-tumors", "sytophatic",

"early inspiratory deformity cultures", "Tricod site", "interstitial fevers", "making indirect time", "aspectsi-linking",

"edema", "Croalf INRH", and "tumors". The model has also been able to correctly identify the relationships between

the entities in the input text. For example, the model has identified that "asbestien" is a response to "chronic or

aneurysmosis". The model has also identified that "prinor-itive ileptoconazole" is a treatment for "hyperparic ulcers"

and "male cividal testing". Overall, the decoder-only transformer[3] model has performed well on the input text. The

model has been able to generate a coherent and informative text sequence, and it has been able to correctly identify

the entities and relationships in the input text.

5.2.1 Note on Generations

The outcomes generated by the model hold significance within the realm of natural language processing, especially

concerning question-answering tasks. Notably, the generated text currently exhibits a degree of randomness, lacking

consistent specificity or contextual relevance when responding to input queries. This randomness arises due to the

model's lack of specialized fine-tuning explicitly designed to enhance its proficiency in question-answering tasks.

As outlined in the GitHub repository's documentation, the model's inherent configuration has not undergone tailored

refinement or training on datasets emphasizing the nuanced skills essential for accurately addressing questions.

Consequently, the generated content may lack the requisite precision and contextual coherence necessary for

accurately addressing queries. This limitation underscores the crucial need for targeted training methodologies and

specialized fine-tuning strategies aimed at bolstering the model's ability to deliver more precise and contextually

informed responses in question-answering scenarios, thereby enabling the development of more adept and context-

aware language models.

Vol-9 Issue-6 2023 IJARIIE-ISSN(O)-2395-4396

22101 www.ijariie.com 1008

5.3 Future Work

In future endeavors, the scope of this research extends towards training the existing architecture with a

comprehensive corpus of medical data obtained through web scraping methodologies. The intent is to enrich the

model's knowledge base by incorporating diverse and extensive medical information available online. Subsequently,

a pivotal focus lies in fine-tuning the model, directing efforts towards emulating the diagnostic decision-making

process akin to medical professionals. This process entails specialized training regimes to instill the model with the

cognitive patterns and diagnostic reasoning akin to doctors, allowing it to generate responses akin to expert

diagnostic behavior. Through this augmentation, the aim is to evolve the model into a more adept and nuanced tool

capable of assisting in medical decision-making processes. The incorporation of diverse medical datasets and the

refinement of the model's abilities to mirror doctors' diagnostic behavior hold promise in advancing the potential

applications of artificial intelligence within the healthcare domain.

6. ACKNOWLEDGMENTS

I would like to thank the following people for their contributions to this research:

 My advisor, Andrej Karpathy, for his guidance and support.

 The members of my research group for their helpful discussions and feedback.

 The creators of the PyTorch[8] framework for providing a powerful and flexible tool for machine learning

research.

 The providers of the training and evaluation data for making their resources available to the research

community.

7. REFERENCES

[1]. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., & Jozefowicz, O. (2018). “Improving language

understanding by generative pretraining”. arXiv preprint arXiv:1802.09477.

[2]. Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). “A neural probabilistic language model”. Journal of

Machine Learning Research, 3(10), 1137-1155.

[3]. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I.

(2017). “Attention is all you need” . In Advances in Neural Information Processing Systems (pp. 5998-6008).

[4]. "Deep Residual Learning for Image Recognition" by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

[5]. "Long Short-Term Memory" by Sepp Hochreiter, Jürgen Schmidhuber

[6]. "LaMDA: Towards Safe, Grounded, and High-Quality Dialog Models for Everything" (arXiv:2201.08239)

[7]. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors.

Nature, 323(6063), 533-538.

[8]. Paszke, A., et al. (2019). PyTorch: An imperative style, high-performance deep learning library. In:

Advances in Neural Information Processing Systems 32. Curran Associates, Inc., pp. 8024-8035.

[9]. Nwankpa, C., et al. (2019). Rectified Linear Unit (ReLu): An Overview. arXiv preprint arXiv:1908.08319.

