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ABSTRACT: 

Detecting and classifying animal species serves as a foundational step in assessing their long-term viability and the 

impact our actions may have on them. Additionally, this process aids in the recognition of both predatory and non-predatory 

animals, both of which pose substantial threats to both humans and the environment. Moreover, it contributes to the reduction 

of traffic accidents in various regions, where animal encounters on roadways have led to numerous automobile collisions. 

Nonetheless, the task of detecting and classifying animal species is fraught with challenges, including variations in size and 

disparate behaviors among species. This paper presents an innovative approach, employing a novel two-stage network with 

a modified multi-scale attention mechanism, to create an integrated system that effectively addresses these challenges. At 

the regional proposal stage, we adopt a pyramid design with lateral connections, enhancing the sensitivity of semantic 

characteristics for smaller objects. Furthermore, we employ a densely connected convolutional network to enhance 

functional transmission and multiplex it throughout the classification stage, resulting in more precise classification with 

fewer parameters. Our project demonstrates that deep neural networks, a cutting-edge form of artificial intelligence, can 

autonomously extract such data. The ultimate goal is to train neural networks for automatic animal identification and 

recognition, a step forward in harnessing the potential of these technologies.  

Keywords: Animal detection, Feature learning, Image modalities, Deep neural network, camera trap images.  

 
  

significant risks, with tigers accounting for a higher number of human fatalities than any other species of their kind (Nowak 

et al., 5). However, the lack of comprehensive records across governments obscures the true extent of animal-related deaths. 

Animal attacks often occur during the night due to hunger, as animals venture in search of food, making the development 

of effective techniques for animal detection, classification, and monitoring crucial to mitigate these risks, prevent animal-

vehicle accidents, and deter theft. Object detection, a rapidly evolving field in computer vision, is central to these efforts, 

with deep learning techniques like CNNs showcasing exceptional performance in image comprehension. Two-stage 

detectors, such as Faster R-CNN, R-FCN, FPN, and YOLOv5 (Birds class, 7), have gained significant attention due to their 

high precision. Challenges related to anchor sizes persist, impacting the accuracy of detection. In the realm of computer 

vision, the application of animal detection is crucial for solving diverse challenges, including wildlife accidents and the 

protection of endangered species (Birds class, 7). Recognizing animals poses unique challenges, primarily related to 

variations in shape, color, and appearance within the same species (Birds class, 7). Differences in lighting conditions and 

orientations also affect animals' identification. These challenges require specialized models with significant learning 

capabilities to identify numerous animal breeds in still images, utilizing convolutional neural networks (CNNs) with fewer 

parameters and connections (Birds class, 7). Attention mechanisms in object detection and classification frameworks, 

                                                 

1 . INTRODUCTION:  

Detecting and classifying animal species plays a crucial role in addressing various challenges, including wildlife-related 

road accidents resulting in fatalities and injuries and human-wildlife conflicts (Nowak et al., 5). Animal attacks, responsible 

for numerous human injuries and fatalities, exhibit varying frequencies depending on geographic regions. For instance, in 

the United States, an estimated two million animal attacks on humans occur annually (Warrell, 6). Tanzanian and American 

scientists report a notable increase in such incidents from 1990 to 2005, with at least 563 villagers falling victim to animal 

attacks during this period. Predatory animals, such as tigers and lions, are known to pose  
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including intricate and soft attention, have also garnered attention, along with the Region Proposal Network (RPN) to handle 

tiny animal species. While approaches involving image enlargement and high-resolution detection maps are used to address 

small animal detection, multi-level representation network variations enhance model capability. The pursuit of real-time 

applications, however, presents computational challenges in addressing these issues effectively (Birds class, 7).  

  

  

 

Figure 1 Object Detection  

  

Figure 2 Comparision of various Detection Methodology  

  

  

1.1 DEEP LEARNING AND IMAGE CLASSIFICATION:  

In the realm of deep learning, particularly within the domain of supervised learning, the fundamental objective revolves 

around mastering the art of mapping input data to desired output categories through the application of specialized neural 

network architectures (Goodfellow et al., 2016). In the context of image classification, the primary goal is to train a deep 

learning algorithm capable of processing and categorizing images into predefined classes, including distinct animal species. 

Over the recent years, the field of image classification has witnessed the profound rise of convolutional neural networks 
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(CNNs), with their dominance exemplified in notable challenges like the ImageNet Large Scale Visual Recognition 

Challenges (ILSVRC) (Krizhevsky, Sutskever, & Hinton, 2012; Russakovsky et al., 2015).  

  

  

CNNs, initially introduced by LeCun et al. in 1989, comprise two interconnected core components: a convolutional section 

designed to extract localized features from images and a fully connected segment responsible for mapping these acquired 

features to the desired output categories (LeCun et al., 1989). Unlike earlier approaches, CNNs eliminate the necessity for 

manually crafted features. Instead, they autonomously acquire spatial features by adjusting their parameters (weights) during 

model training, accomplished by propagating errors from the output layer back to the input. The precise configuration of 

operations applied to the data within a CNN defines its architecture. Figure 3 schematically illustrates the architecture of a 

CNN, highlighting its primary unit, a layer, which includes filters conducting convolutions on the input data to discern 

spatial patterns, incorporate activation functions, and perform pooling (sub-sampling) operations. Each layer typically 

generates smaller feature maps, subsequently forwarded to the subsequent layer. Multiple such layers are typically arranged 

sequentially, enabling intricate feature extraction. The count of layers within a neural network's architecture defines its 

depth, signifying the essence of deep learning – neural networks endowed with numerous layers (He et al., 2015).  

  

Figure 3 Schematic illustration of CNN architecture  

  

  

2. METHODOLOGY  

  

Our classifier operates in two distinct phases: training and testing. During the training phase, a collection of images serves 

as visual exemplars. In the subsequent testing phase, a freshly captured image, referred to as the test image, is presented as 

input to the classifier. Leveraging the insights acquired during training, the classifier then categorizes the test image into the 

most appropriate class.  

  

A. Receiving the input image:  

Within the envisioned system, an image is acquired through the camera connected to the system. This captured test 

image serves as the initial input and undergoes conversion into a binary pattern. Subsequently, a dataset containing 

previously labeled images is utilized, and their distinctive features are compared with those extracted from the test image. 

This comparison process aids in identifying the specific animal species within the image.  

  

B. Feature Extraction:  

The input test image can be processed to generate a condensed set of features. These chosen features may encompass 

crucial information from the input data, enabling the accomplishment of the desired task with this streamlined dataset instead 

of the original, unmodified data. Fixed features, known as human-crafted features, are directly derived from images. In 

contrast, deep neural networks, unlike human-crafted features, identify features within images and establish multiple tiers 

of representation, with the upper-level features encapsulating more abstract aspects of the data.  

  

C. Identifying the species present in an image:  

In the context of species classification, the output layer is responsible for calculating the probabilities associated with 

the presence of the detected animal in the image, categorizing it into one of the potential classes. While furnishing such an 
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outcome could significantly reduce the human effort required for accurate species identification, verifying this hypothesis 

still necessitates human expertise and knowledge.  

3. LITERATURE SURVEY:  

Initial research in automated animal identification primarily focused on matching species-specific patterns in images, 

requiring extensive manual preprocessing. However, the achieved accuracies, such as the 82% reported by Yu et al. (2013), 

fell short of human-level accuracies, which reached 96.6% (Swanson et al., 2016). Recent studies employing Convolutional 

Neural Networks (CNNs) for automatic animal species identification have reported accuracies around 90%, with some 

involving manual preprocessing (Gomez Villa et al., 2017) or more complex pipelines with automatic preprocessing 

(Giraldo-Zuluaga, Salazar, Gomez, & Diaz-Pulido, 2017). The most recent advancements by Norouzzadeh et al. (2018) 

achieved accuracies of 93.8%, matching human accuracy on over 99% of images.  

Our study seeks to apply and validate CNNs across a broader range of camera trap datasets compared to previous research. 

While Norouzzadeh et al. (2018) demonstrated impressive results with the Snapshot Serengeti dataset, consisting of 3.2 

million images, most camera trap datasets, as observed on Zooniverse, are smaller in scale. Effective image classification 

models often require substantial datasets, like the renowned ImageNet dataset containing 1.2 million images. To assess the 

applicability of CNNs in more realistic and smaller-scale scenarios, we incorporated several smaller datasets, each 

comprising significantly fewer than one million images.  

Moreover, our work explores transfer learning, investigating how to adapt models trained on large camera trap datasets to 

smaller ones. While transfer learning has been applied in prior studies (Gomez Villa et al., 2017; Norouzzadeh et al., 2018), 

our unique approach involves transferring knowledge from models trained for a similar task (animal identification) rather 

than non-camera trap datasets (e.g., ImageNet). This approach holds potential for more efficient model training on citizen 

science platforms like Zooniverse, particularly for datasets with limited labeled images.  

  

  

3.1 YOLOV5  

YOLO, an abbreviation for 'You Only Look Once,' represents the cutting-edge development in the YOLO series, known 

as YOLOv5 [1]. Distinguished by its anchor-based one-stage detection mechanism, YOLOv5 boasts remarkably fast 

inference speeds [2]. This innovation has greatly enhanced the efficiency of object detection, making it a valuable asset in 

various applications.  

  

  

1. Architecture Overview:  

For our study, we selected three architectures, namely YOLOv5s, YOLOv5m, and YOLOv5l. The backbone of our 

approach incorporates the Cross Stage Partial Network (CSPNet) [3]. Preceding the entry into the backbone network, the 

YOLOv5 algorithm introduces the Focus module and conducts down sampling by segmenting the image. The neck of the 

architecture takes the form of a Feature  

Pyramid Network (FPN) complemented by a Path Aggregation Network (PAN), effectively incorporating feature 

information from three distinct scales [40,41]. Finally, it employs the Non- Maximum Suppression (NMS) technique to 

eliminate redundant prediction bounding boxes.  
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Figure 4: YOLOv5 structure diagram.  

2. Implementation Details:  

We employed the YOLOv5 framework for model training, leveraging the capabilities of PyTorch [42]. Our optimization 

strategy relied on Stochastic Gradient Descent (SGD), where the momentum parameter was configured at 0.937, and 

the weight decay was set to 0.0005. The initial learning rate was initialized to 1 × 10−2 and experienced linear decay. 

During training, we implemented a warm- up phase spanning three epochs, with an initial warm-up momentum of 0.8. 

It's worth noting that due to variations in model sizes, the total number of epochs and batch sizes differed. For specific 

configurations of each model, please refer to Table 1. Our experiments were conducted using the RTX A4000 GPU.  

  

  

Table 1. YOLOv5 parameter settings.  

  

Model  Epoch  Batch Size  

YOLOv5s_day  80  32  

YOLOv5m_day  80  32  

YOLOv5l_day  80  16  

YOLOv5s_night  65  32  

YOLOv5l_night  65  32  

3.2 EVALUATION METRICS:  

In this research, we employed precision, recall, and mean average precision (mAP) as the key evaluation metrics:  

  𝑇𝑃  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =     
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𝑇𝑃 + 𝐹𝑃  

  𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃  

𝑇𝑃 + 𝐹𝑁  

• True Positive (TP) represents the count of accurate detections of the ground-truth bounding box, signifying the number 

of intersections over union (IoU) that surpass the threshold and are correctly categorized.  

• False Positive (FP) denotes the count of incorrect detections, which could involve either detecting a non-existent object 

or misplacing detections of an existing object. This refers to the number of that do not exceed the threshold or the 

number of classification errors made.  

• False Negative (FN) is the count of missed detections, indicating the number of bounding boxes that were not predicted.  

  

In video detection scenarios, our evaluation metric of choice was accuracy. To assign a final label to a video clip, we 

employed a majority voting mechanism based on the most frequently occurring detection results across all frames within 

the target video. These detections were considered only if their confidence levels exceeded the specified score threshold.  

𝑁  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   

𝑃  

Here, "N" represents the count of videos that were correctly classified, and "T" represents the total number of videos in 

the dataset.  

  

  

4. RESULTS  

  

4.1 NTLNP Dataset:  

After a thorough examination and cleaning process, we curated a dataset named NTLNP, which consisted of 25,657 

images spanning 17 distinct species categories. This dataset was carefully compiled, comprising 15,313 images captured 

during daylight and 10,344 images taken at night. The images in the dataset exhibited a resolution of either 1280 × 720 or 

1600 × 1200 pixels (as detailed in Table 2). Following an 8:2 ratio split, the NTLNP dataset was partitioned into a training 

set and a test set, each containing different types of data, as illustrated in Table 3.  

Table 2 . The main properties of the NTLNP dataset  

  

Species Category  No. of Total 

Images  

No. of Daytime 

Images  

No. of Nighttime 

Images  

Image Resolution  

17  25,657  15,313  10,344  1280 × 720/1600 × 1200  

  

  

Table 3. NTLNP dataset and per-class training set and test set assignments.  

  

Species  
Day and Night  Day  Night  

Training Set  Test Set  Training Set  Test Set  Training Set  Test Set  

Amur tiger  1123  246  676  145  447  101  

Amur leopard  1260  314  872  219  388  95  

Wild boar  1801  423  1159  291  642  132  

Sika dear  1726  466  1216  328  510  138  
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Red fox  1504  358  802  188  702  170  

Raccoon dog  1169  324  248  81  921  243  

Asian badger  1052  257  735  176  317  81  

Asian black bear  1084  285  772  188  312  97  

Cow  1016  284  936  263  80  21  

Dog  1150  280  1056  252  94  28  

Total  12885  3237  8472  2131  4413  1106  

  

4.2. Species Detection and Classification:  

For the comprehensive evaluation of species recognition accuracy, we selected three models, namely YOLOv5m, 

FCOS_Resnet101, and Cascade_R-CNN_HRNet32, which exhibited superior performance. Notably, due to the limited 

availability of data with only 20 images of hares taken during the daytime, these images were not included in the model 

evaluation.  

In the context of species recognition for the 16 remaining species based on daytime datasets, the following recognition 

accuracies were observed:  

• Cascade_R-CNN_HRNet32 achieved an impressive accuracy range of 91.6% to 100%.  

• YOLOv5m exhibited accuracy within the range of 94.2% to 99.5%.  

• FCOS_Resnet101 demonstrated accuracy spanning from 94% to 100%.  

Furthermore, Cascade_R-CNN_HRNet32 achieved a remarkable 100% recognition accuracy for Amur leopard and musk 

deer, while FCOS_Resnet101 excelled with 100% accuracy for Amur tiger and red fox. Specifically, in the case of the 

raccoon dog species, YOLOv5m and FCOS_Resnet101 achieved recognition accuracies of 96% and 96.4%, respectively, 

outperforming Cascade_R-CNN_HRNet32 by  

4.4% to 4.8%. However, it's worth noting that Sable exhibited the lowest performance, with YOLOv5m achieving the 

relatively highest accuracy of 94.2%.  

All of the models demonstrated the capability to successfully detect each object within a single image. It's important to note 

that in the dataset, instances of different species appearing simultaneously in front of a single camera trap were quite rare. 

Consequently, the images in our dataset typically contained either a single object or multiple objects belonging to the same 

species.  

For visual reference, a selection of identified images is presented in Figure 5. Moreover, additional results obtained using 

the various models can be found in the Supplementary Materials section.  
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Figure 5. Examples of correct detection and classification  

4.2.1. Video Automatic Recognition:  

We conducted experiments using the day-night joint YOLOv5m, Cascade_R-CNN_HRNet32, and FCOS_Resnet101 

models to automatically recognize videos captured by infrared cameras within the Northeast Tiger and Leopard National 

Park. The accuracy of these three models was evaluated at different confidence score thresholds: 0.6, 0.7, and 0.8. The 

results are summarized in Table 4.  

Among the models tested, YOLOv5m exhibited the most consistent and robust performance. At a confidence score 

threshold of 0.7, it achieved an accuracy of 89.6%. In comparison, Cascade_R- CNN_HRNet32 performed slightly less 

effectively, achieving its highest accuracy of 86.5% at a threshold of 0.8.  

However, the accuracy of FCOS_Resnet101 showed notable variations across different confidence score thresholds. At 

a threshold of 0.6, it achieved a video classification accuracy of 91.6%. Nevertheless, as the threshold was increased to 0.8, 

the recognition rate of the videos experienced a sharp decline, ultimately reaching only 64.7%.  
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Table 4. Video classification accuracy of the three models  

  

Videos  Model  Acc_0.6  Acc_0.7  Acc_0.8  

  

725  

YOLOv5m  88.8%  89.6%  89.5%  

Cascade_R-CNN_HRNet32  86.3%  86.4%  86.5%  

FCOS_Resnet101  91.6%  86.6%  64.7%  

  

5. CONCLUSION:  

Studies have delved into the impact of noisy labels on animal classification. From these noisy label examples, we have 

developed an innovative technique for constructing a precise animal species categorization network. We investigated the 

network training process with and without clean samples. The results of these studies highlight the accuracy of our noise-

labeling method, both with and without clean samples.  

Following post-training and testing using custom datasets, the customized model yielded promising results. The overall 

accuracy achieved with the custom datasets was 82%. Additionally, the recall score reached an impressive 81%, indicating 

the model's ability to correctly identify a high proportion of relevant instances. The F1-score, which balances precision and 

recall, was calculated at 73%, demonstrating the model's balanced performance. It's important to note that while the precision 

score was somewhat lower at 66%, this can be attributed to the model's custom nature and the limited size of the datasets 

used for training.  

This research underscores the significance of incorporating network diversity to achieve a more precise collective 

assessment of sample label performance. To create groups with diverse characteristics, we harnessed deep neural network 

features coupled with k-means clustering. These clusters were then used to form groupings. Subsequently, each group was 

employed to train its own network, ensuring that each network received training using a unique set of images. To determine 

the true label of the noisy data, we applied a maximum voting approach.  

The proposed method for categorizing animal species from camera trap photos with noisy labels could prove invaluable for 

extensive wildlife monitoring conducted by citizen scientists (Fegraus et al., 2019). Given that most camera-trap photos are 

collected, analyzed, and shared by amateur volunteers or citizen scientists, inaccuracies in their annotations are expected. 

Using our suggested methodology, we can extract effective animal species classifiers from these datasets.  

  

  

Supplementary Materials: The source code of the experiment is available at: https://github.com/saravanan-  

2003/EcoScan-AI-powered-Animal-Recognition-and-Species-Categorization (accessed on 01 June 2023).  

  

  

Data Availability Statement: NTLNP_dataset link: https://pan.bnu.edu.cn/l/s1JHuO (accessed on 1 May 2023).  
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