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ABSTRACT 
The birds have been with us for many years. There are many disasters happening at every moment that lead to the 

disturb survival of birds. Considering as a friend it is our duty to save them and make their life possible on the 

Earth. Convolutional Neural Networks (ConvNets) are typically developed with a fixed resource budget and then 

scaled up for improved accuracy if more resources are available. In this paper, we investigate model scaling 

systematically and discover that carefully balancing network depth, width, and resolution can lead to improved 

performance. Based on this observation, we propose a new scaling method that uses a simple yet highly effective 

compound coefficient to uniformly scale all depth/width/resolution dimensions. We show how effective this method is 

for scaling up MobileNets and ResNet. 
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1. Introduction  

       Keras efficient net is a fast model that achieves state-of-the-art accuracy in common image classification and 

imagenet for transfer learning tasks. The keras smaller efficientnet model is comparable to the Mnasnet, which was 

similar to the SOTA, which was a smaller model. It offers multiple models, beginning with B0 and ending with B7, 

which represent the combination of accuracy and efficiency on a wide range of scales. The keras efficientnet 

function returns the keras image classification model that has been pre trained with imagenet and optionally loaded 

with weights. Every keras application expects a specific type of input preprocessing, and for efficientnet 

preprocessing, input is included. As a result, the efficientnet preprocessing input is being processed by the function. 

 

          The model expects their inputs to be float tensor pixels with values ranging from 0 to 255. This function 

returns the Keras model, which may or may not have been loaded with weights. The model will optimize the 

efficiency and accuracy of floating point operation. According to stat from Google AI Blog Training efficiency has 

gained significant interests recently. Our EfficientNetV2 performs well on ImageNet, CIFAR-10, CIFAR100, Cars, 

and Flowers datasets thanks to improved progressive learning. We achieve 85.7% top-1 accuracy on ImageNet while 

training 3x - 9x faster and being up to 6.8x smaller than previous models (Figure 1.1). Our EfficientNetV2 and 

progressive learning also make training models on larger datasets easier. ImageNet21k (Russakovsky et al., 2015) is 

approximately 10 times larger than ImageNet ILSVRC2012, but our EfficientNetV2 can complete the training in 

two days using moderate computing resources of 32 TPUv3 cores. Our EfficientNetV2 achieves 87.3% top-1 
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accuracy on ImageNet ILSVRC2012 after pretraining on the public ImageNet21k, outperforming the recent ViT-

L/16 by 2.0% accuracy while training 5x-11x faster (Figure 1.1). We make three contributions: 1. We introduce 

EfficientNetV2, a new family of smaller and faster models. EfficientNetV2 outperforms previous models in terms of 

training speed and parameter efficiency, as discovered by our training-aware NAS and scaling. 2. We suggest a 

more effective progressive learning technique that adaptively modifies both regularization and image size. We 

demonstrate that it expedites training while also increasing accuracy. 3. On ImageNet, CIFAR, Cars, and Flowers 

datasets, we show up to 11x quicker training speed and up to 6.8x higher parameter efficiency than prior art. 

 

 
Table 1.1 

 

 

 

2. . Related work  
 

Training and parameter efficiency: Numerous research, such DenseNet (Huang et al., 2017) and EfficientNet 

(Tan & Le, 2019a), put a strong emphasis on parameter efficiency with the goal of improving accuracy while using 

fewer parameters. Instead of focusing on parameter efficiency, several more recent research try to increase training 

or inference speed. For instance, RegNet (Radosavovic et al., 2020), ResNeSt (Zhang et al., 2020), TResNet (Ridnik 

et al., 2020), and EfficientNet-X (Li et al., 2021) concentrate on increasing the speed of GPU and/or TPU inference, 

whereas NFNets (Brock et al., 2021) and BoTNets (Srin Their training or inference speed, though, frequently comes 

at the expense of more parameters. With respect to the state of the art, this work attempts to greatly increase training 

speed and parameter efficiency.  

 

Progressive training: Various types of progressive training, which dynamically change the training settings or 

networks, have been proposed in previous works for GANs, transfer learning, adversarial learning, and language 

models (Press et al., 2021). The term "progressive resizing" (Howard, 2018) primarily refers to our strategy, which 

strives to increase training efficiency. However, it frequently comes at a cost to accuracy. Mix&Match (Hoffer et al., 

2019), which randomly samples different image sizes for each batch, is another closely similar piece of work. Both 

progressive resizing and Mix&Match reduce accuracy by utilizing the same regularization for all image sizes.  

 

3. Scaling Dimensions  

The primary challenge is that the optimal d, w, and r depend on one another and change in value under various 

resource limitations. Because of this challenge, conventional ConvNets are typically scaled in one of these 

dimensions: 

 3.1 Depth(d): The most prevalent method employed by many ConvNets is scaling the network depth. It seems to 

make sense that a deeper ConvNet can generalize effectively to new tasks and collect richer, more complicated 

characteristics. However, because of the vanishing gradient issue, deeper networks are likewise more challenging to 

train. Skip connections and batch normalization are two methods that help with the training problem, but the 
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accuracy gain of very deep networks declines as a result. For instance, ResNet-1000 has similar accuracy to ResNet-

101 while having many more layers. Our empirical analysis on scaling a baseline model with various depth 

coefficients is shown in Figure 3 (middle), which further illustrates the falling accuracy return for very deep 

ConvNets. 

 

3.2 Width(w): For small size models, network width scaling is frequently utilized. Wider networks may typically 

capture more fine-grained information and are simpler to train, as was previously discussed. Extremely wide but 

shallow networks, on the other hand, frequently struggle to capture higher level elements. Our empirical findings in 

Figure 1.1 demonstrate that when networks get significantly broader with increasing w, accuracy quickly reaches 

saturation. 
 
 3.3 Resolution (r): ConvNets may be able to detect more minute patterns with higher resolution input images. 

Modern ConvNets typically use 299x299 or 331x331 starting from 224x224 in early ConvNets for higher accuracy. 

With 480x480 resolution, GPipe recently achieved state-of-the-art ImageNet accuracy. The accuracy gain decreases 

for very high resolutions (r = 1.0 denotes resolution 224x224 and r = 2.5 denotes resolution 560x560), yet higher 

resolutions like 600x600 are also frequently employed in object detection ConvNets. Higher resolutions do, in fact, 

enhance accuracy. 

 

3.4 Compound Scaling: Different scaling dimensions are not independent, as we experimentally find. It makes 

sense, then, to enhance network depth for higher resolution photos so that the larger receptive fields can aid in 

capturing similar features that include more pixels in larger images. Consequently, when resolution is higher, we 

should also widen the network. 

 

A model with a variable width coefficient is shown by each dot on a line (w). Table 1.1 contains all baseline 

networks. While the final baseline network (d=2.0, r=1.3) has 36 layers with a resolution of 299x299, the first 

baseline network (d=1.0, r=1.0) has 18 convolutional layers with a resolution of 224x224. It is essential to balance 

network width, depth, and resolution across all dimensions during ConvNet scaling in order to achieve higher 

accuracy and efficiency. In truth, some earlier research has attempted to arbitrarily balance network breadth and 

depth, but each of these approaches requires time-consuming human tuning. We suggest a new compound scaling 

technique that, according to a set of guiding principles, equally scales network breadth, depth, and resolution using a 

compound coefficient: 

 

 

where the results of a tiny grid search can be used to calculate the constants,, and. ,, and indicate how to allocate 

these additional resources to network breadth, depth, and resolution, respectively. Intuitively, is a user-specified 

coefficient that governs how many more resources are available for model scaling. Notably, the FLOPS of a 

standard convolution operation is proportional to d, w*w, and r*r, meaning that although network depth will double 

FLOPS, network width or resolution will cause FLOPS to grow by four times. Scaling a ConvNet with equation 3 

will roughly increase total FLOPS by since convolution operations often account for the majority of the computation 

cost in ConvNets. 

 

4. Results of Transfer Learning for EfficientNet  

A list of frequently used transfer learning datasets was utilized to assess our EfficientNet. We use the same training 

parameters as and, which fine-tune on fresh datasets using ImageNet's pretrained checkpoints. The effectiveness of 

transfer learning is shown in Table 5: (1) With an average parameter decrease of 4.7x (up to 21x), our EfficientNet 

models outperform publicly accessible models like NASNet-A (Zoph et al., 2018) and Inception-v4. (2) Despite 



Vol-10 Issue-2 2024                IJARIIE-ISSN(O)-2395-4396 
    

22928 www.ijariie.com 1975 

employing 9.6x fewer parameters, our EfficientNet models still outperform state-of-the-art models like DAT (Ngiam 

et al., 2018), which dynamically synthesizes training data, and GPipe, which is trained utilizing specialized pipeline 

parallelism. 

 

5. Discussion 

The ImageNet performance of several scaling methods for the same EfficientNet-B0 baseline network in order to 

separate the impact of our suggested scaling approach from the EfficientNet architecture. In general, all scaling 

techniques increase accuracy as the cost increases. 25% more FLOPS, but our suggested compound scaling method 

can also increase accuracy over current single-dimension scaling methods by up to 2.5%, highlighting the 

significance of our compound scaling proposal. Comparing the class activation map for some example models with 

different scaling strategies to help clarify why our compound scaling method is superior to others. Images from the 

ImageNet validation set are chosen at random and scaled across all of these models from the same baseline. In 

contrast to previous models, which either lack object details or are unable to capture all of the objects in the photos, 

the model with compound scaling has a tendency to concentrate on more pertinent regions with more object 

features. 

 

6. Conclusion 

In this paper, we rigorously investigate ConvNet scaling and show that a crucial but absent component, precisely 

balancing network width, depth, and resolution, is impeding us from more accuracy and efficiency. We offer a 

straightforward and incredibly efficient compound scaling strategy to solve this problem, allowing us to rapidly 

scale up a baseline ConvNet to any target resource limitations in a more principled manner while keeping model 

effectiveness. We show, using both ImageNet and five widely used transfer learning datasets, that a mobilesize 

EfficientNet model can be scaled up very successfully, surpassing state-of-the-art accuracy with a factor of ten less 

parameters and FLOPS. 
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