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ABSTRACT
In Mathematics, a power series in one variable is an infinite series. In this paper, we will find the Elzaki
Transformation of some power series. The purpose of paper is to prove the applicability of Elzaki transform to some
significant infinite power series.

Keywords: Elzaki transformation, power series.

1. INTRODUCTION
Elzaki transformation is a mathematical tool used to obtain the solutions of differential equations without finding
their general solutions. It has applications in nearly all engineering disciplines [1, 2, 3,]. It also comes out to be very
effective tool to find the Elzaki Transformation of some power series. In this paper, we present a new approach
called Elzaki transform approach to find the Elzaki Transformation of some power series.

2. BASIC DEFINITIONS
2.1 Elzaki Transform

If the function A(y), y > 0 is having an exponential order and is a piecewise continuous function on any interval,
then the Elzaki transform of h(y) is given by

BG) =R =p [ ¢ PHG)y,
0
The Elzaki Transform [1, 2, 3,] of some of the functions are given by

° E {Zn} = nl! pn+2
,wheren =0,1,2, ..

e E {eaz} = p?

1-ap’
o E{sinaz} = ap®
T 1+a2p2?’
2
ap
o E{cosaz} =——
{ } 1+a2p2’

3
e E{sinhaz} = 1—3:2p2’

ap?

e E{coshaz} = Tarpr

2.2 Inverse Elzaki Transform

The Inverse Elzaki Transform of some of the functions are given by

Zn—Z

e EYp"}= o = 2,3,4..

Ay P2y
o E{}=e"
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2.3 Power series [4, 5, 6,]:

2.4 Maclau

3.

rin series [4, 5, 6,]:

METHODOLOGY
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3.1 Elzaki Transformation of Geometric Series later than the expanding to power series appearance [4, 5, 6,]:

%=iz“=f(z)

n=0

E{f(2)} =

5]

n=0

=pf e_EZzndz
0 0

n=
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n;O 0
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- n=0
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n=0
Hence,

n+2
p

[oe]

E{f(2)} = Z n! p"*?

n=0
3.2 Elzaki Transformation of the Power series expansion of e* later than the expanding to power series

appearance[4,5,6,]:
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Hence, E{f(z)} = z pht?

3.3 Elzaki Transformatlon of the Power series expansion of log(1 + z)later than the expanding to power series
appearance [4,5,6,]:

log(1 +7) = i CD™ o~
E{f(z)}—E{Z( D e
o 3{%": 1)n+t }dz
z [
z( 1)““[ f il
Z( R
_ 2 (—13““ ol pr+2

— Z(_l)n+1 (n _ 1)! pn+2

E{f(z)}—Z( D™ (n - 1)t p*2

3.4 Elzaki Transformatlon of the Power series expansion of log(1 + z) later than the expanding to power series
appearance[4 56,]:
)Zn 1

log(1+z) = Z - = f(z)

E (f(z )}‘E{Z( 1)2“ 12“}
=pfooe piz(?liz }dz
z J- _E( 1)2]’1 1 ndZ
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had —1)2n-1 ©
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Hence,

B{f@)} = ) (~1)™" (n— 1)t p*?

((11:)) later than the expanding to power series

3.5 Elzaki Transformation of the Power series expansion of log
appearance[4,5,6,]:

1+ 2
log( 2) = Z 221 = f(z)
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Hence,

E {f(z)} = Z 4(n — 1)1 p2+L

3.6 Elzaki Transformation of the Power series expansion of Cosx later than the expanding to power series
appearance [4, 5, 6,]:
c D",
o " = f(z)

n=0

COSX =
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Hence, E{f(t)} = Z(_l)n p2n+2

n=0
3.7 Elzaki Transformation of the Power series expansion of Sinx later than the expanding to power series
appearance [4,5,6,]:

Sinx = 1 2(n_+)111)' 2201 = f(z)
. { °° 2(—+>I)' 2}
%{ 2 2(n i)z)' 2n+1}d2
:nzop Ow 5 (Z(H__I_)I)'zzn“dz
- (z(n_ P;' [p fow ¢ ;szdz]
(2(11_ i);l)r =
%(Zn + 1)1 1+

Hence, E{f(t)} = Z( 1)n p2n+3

3.8 Elzaki Transformatlon of the Power series expansion of Coshx later than the expanding to power series
appearance [4,5,6,]:

[oe]

1
Coshx = onl | = f(z)
n=0
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E{f(z)} = E{Z % Zn}

n=0

© 2o 1
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o n!

u[ u+2
Z 2n!

1
— 2n+2
= al 2nlp
n=0

Hence, E{f(t)} = Z Diay”

n=0
3.9 Elzaki Transformation of the Power series expansion of Sinx later than the expanding to power series
appearance [4, 5, 6,]:

1
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n;O ’
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— 2n+1
E{f(2)} = E{Z} @nt D v/ }
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Hence, E{f(t)} = Z p2n+3
n=0

3.10 If f(z)is a power series expansion
at thepoint b, where b is any constant,
b € R, Its Taylor'sseries expansion
[5, 6]is
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f(z) = Z b, (z — b)"
n=0

Then, The Elzaki transformation of f(z)
is given in the form of power series as

E{f(2)} = E [Z by (z — b)“l
n=0

= pfme_g{ibn (z—b)n}dz

[ee]

= pz b, J;oo e_g {(z —b)"}dz

n=0

A [ e

n=0
[oe] (o] b
EZ b, (z—b)" = Z b, e Pn!pnt?
n=0 n=0

3.11 If f(z)is a power series expansion

at thepoint 0, where 0, Its Power
series expansion is[ 5,6,7, ]:
[ee]

£z) = ) by @"
n=0

Then, The Elzaki transformation of f(z)
is given in the form of power series as

B{f(2)} = E lz by (z)“]

n

n=0

=p f(: e_g {nzzo b, (z)“} dz

=p Z by fo e (M de
=S b [t

- Z b, E(u)"
réo:O

— Z bn n! pn+2
n=0

3.12 Elzaki Transformation of the Power series expansion of et” later than the expanding to power series
appearance[5,6,7,]:
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pz f P {(2)™")dz

= Zﬁ[pj; er {(z)zn}dz]
= i%E(Z)Zn
= i&zm Jone2

n=0
3.13 Elzaki transformation of Convergence Series [4, 5, 6,]:
c+z (c+2z)® (c+3z2)°
+ + +

1 1! 2! 3!
+ n
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E{Z (c+ ?Z) } Z ¢ pnpn+2
n!
n=0 n=0
Conclusion:

In this paper, we have found the Elzaki Transformation of some power series and it comes out to be very foremost
and effective tool to find the Elzaki Transformation of some power series.
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