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Abstract 
Prudence is one of the important features of software quality, as it can affect the stability of software. The cost and 

reuse of software is also likely to make sense. To maintain software, programmers have to understand the source 

code. The understanding of source code depends on the psychological complexity of the software, and cognitive 

abilities are required to understand the source code. The understanding of source code is influenced by so many 

factors, here we have taken various factors from a unified view. In it we have chosen a rough set approach to 

calculate comprehensibility based on external identity. Outliers generally have an unusual behavior, here we have 

taken that the project can be easily understood or difficult to understand. Here we have taken a few factors that 

underlie understanding, bringing forward an integrated approach to determining understanding. We extracted 20 

test case metrics, six developer-related metrics, and two understandable proxies from a white-box test case 

classification experiment. Based on these matrices, we employed classification and regression algorithms to 

construct the model to understand the test case. From the experiment, we can conclude that the combined matrices 

always exhibit better discriminated performance in the classification model as well as a higher correlation in the 

regression model when compared to a model that only includes test case metrics or developer metrics. 
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 INTRODUCTION 

 

Software products are expensive. Therefore, software project managers are always concerned about the high cost of 

software development, and desperately seek ways to cut development costs. One possible way to reduce 

development costs is to reuse parts from previously developed software. In addition to lower development costs and 

time, reuse also leads to higher quality of developed products as reusable components ensure higher quality. 

When programmers try to reuse code that is written by other programmers, faults can occur due to misunderstanding 

of the source code. The difficulty of understanding limits reuse techniques. The software development life cycle 

(SDLC) maintenance phase has a comparatively longer duration than all previous phases, obviously resulting in 

much greater effort. It has been reported that the amount of effort spent on the maintenance phase is 65% to 75% of 

the total software development [5]. 

A software metric is a measure of some attribute of a software or its specifications. Since quantitative measurement 

is necessary in all sciences, there is a continuous effort by computer science practitioners and theorists to bring about 

the same approach to software development. 

 

 

Source Code Understability Metrics 
Understanding of software also requires some metrics. Here are some metrics of code under-standability [3] that are 

used by many organizations. Source code readability, quality of documentation, software should be taken into 

account when measuring key-practicability. 
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LOC: A common basis for inference on software projects is LOC (Lines of Code). LOC is used to make time and 

cost estimates. 

 

Comment Percent: RSM (Resource Permanent Matrix) counts each comment line. The degree of commenting 

within the source code measures the care taken by the pro- grammer to make the source code and algorithms 

understandable. Poorly commented code makes the maintenance phase of the software life cycle very expensive. 

 

 

 

Logical line count = LOC + comment lines + blank lines 

In addition to LOC (lines of codes), we can consider using eLOC (effective lines of code), lLOC (logical lines of 

code), blank lines of code, and white space percentage metrics. 

 

LEN * Length of Names: If the names of processes, variables, constants, etc. are longer, they are probably more 

descriptive. 

 

Example:  a 'is not a good variable name, is not better, eage is more descriptive in employment. 

In addition to the length of the names, sometimes we can consider the average length. Names of variables, functions, 

constants, etc. are considered. We can also consider the name specificity ratio, because when 2 program entities 

have the same name, it is possible that they are mixed. UNIQ measures the uniqueness of all names. 

UNIQ = Number of unique names / Number of total names 

 

Function Metrics: In this we can measure the number of functions and the lines of code per function. Functions that 

have a large number of lines of code per function are difficult to understand and maintain. They are a good indicator 

that the function can be broken into a sub function thereby supporting the design concept that the function must 

perform a singular discrete action. 

 

Function Count Metric: The total number of functions within your source code determines the degree of 

modularity of the system. This metric is used to determine the average number of LOCs per function, the maximum 

number of LOCs per function, and the minimum LOCs per function. Apart from function count, we can also use 

average lines of code, maximum LOC per function, minimum LOC per function metrics. 

 

Macro Metrics [2]: Macros will make it less difficult to understand and maintain. As macros are expanded before 

the compilation phase, most debuggers will only see macro names and have no reference as to the contents of the 

macro, so if the macro is the source of a bug in the system, the debugger will never catch it. This situation can waste 

many hours of labor. 

The number of macros used in a system indicates the design style used to build the system. Systems loaded with 

macros are subject to the portability problem. The macro LOC metric gives insight into how large macros are in the 

system. The larger the macro, the more complex its structure and the greater the potential for misbehavior hidden by 

the macro. 

 

Class metrics: In this we can measure the number of classes and the lines of code can be taken per class. The 

number of classes in a system indicates the degree of object orientation of the system. Additionally, we set the 

average lines of code per square, the maximum LOC per square, and the minimum LOC per square. 

 

Code and Data Spatial Complexity [7]: Spatial ability is a term used for processing visual information related to 

an individual's orientation related to cognitive ability, the location of objects in space, and location. 

 

 MOTIVATION 
Software engineering is much more specialized with other established branches of engineering because it lacks 

measuring units, well-accepted measures or metrics for soft-ware development. With the lack of such measurement 

units, software development and maintenance would have stabilized in craft type models. To overcome this 

deficiency, study, adoption and further improvement require great experience, skills. Soft-ware can be quantitatively 

described with the help of metrics and evaluation of the use of tools on projects, productivity and quality. Software 

therefore helps to control, manage and maintain complexity measures. If you cannot measure it, you cannot control 

it. 
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RESEARCH OBJECTIVE 
1. We want to evaluate the software understanding of different projects, using different metrics. 

2. For evaluation of software understanding, we have followed various approaches. 

3. To Evaluation of an algorithm of Software defects of Understandability Using a new Metrics of Software 

4. To propose a new metric, which can be used in the evaluation of software understanding? 

5. We investigate a different algorithm to explain the characteristics that interfere with the defectiveness of 

software classes. 

 

 

LITERATURE REVIEW 
According to Novi Setiani etal. (2020) several automated test case generation techniques have been proposed to 

date, although the adoption of such technologies in industry is low. A major factor that has contributed to this low 

adoption rate is the difficulty experienced by the developer in terms of automatically reading and understanding test 

cases. For this reason, it is necessary to construct an understandable model of a test case to improve the generated 

test case. 

H. Wu, C. Nie, J. Petke, Y. Jia, and M. Harman (2020), ‘‘told that an empirical comparison of combinatorial testing, 

random testing and adaptive random testing. 

D. Honfi and Z. Micskei. (2019). Stated that Classifying Generated White-Box Tests: An Exploratory Study. 

S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vasquez, D. Poshyvanyk, and R. Oliveto (2019) told that 

automatically assessing code understandability. 

G. Grano, S. Scalabrino, H. C. Gall, and R. Oliveto (2018) tolad that an empirical investigation on the readability of 

manual and generated test cases. 

H. Wu, C. Nie, J. Petke, Y. Jia, and M. Harman (2018) told that an empirical comparison of combinatorial testing, 

random testing and adaptive random testing. 

According to A. Panichella, F. M. Kifetew, and P. Tonella (2017) the larger the program size, the greater the 

resources needed to write the class content. Automatically detect test cases at both the unit level, through black-box 

testing, using the random test method and whitebox testing, involving dynamic symbolic execution (DSE) and 

search-based software testing (SBST). Several methods of generating have been proposed. 

 

 

RESEARCH METHODOLOGY 
This research will be done in five stages. First, we have to extract the dataset to get the test case and developer 

metrics. We will be able to understand the test case by the developers' answers and the time required. Then, we will 

construct the dataset as a matrix for classification and regression algorithms. Last, we will perform a model 

evaluation using some measurements. 

 

Feature Extraction 

The first phase of this research is to extract the HONFI dataset. We use a subset of the dataset as the main result of 

using Hon. This dataset will originate from the experiment of classifying white box generated test cases involving 

30 developers and 15 test cases. This dataset consists of two collections, set of test case files and results of 

experimental evaluation of test cases from the developer. Honorable generates the test cases under test using the 

intelligent tool for each tool. Evaluation of test cases to the developer is measured by the time required to understand 

the results of the test cases and the developer's answers. The first step in our methodology is extracting these 

generated test cases to obtain 20 test case metrics. 

 

Data preparation 

After 26 metrics are extracted from test case files and developer profiles, the next step is merging these two 

collections into the matrix m x n. The number of rows, the meter, denotes the count of the test case classification 

result made by the developer. Thirty developers assess 15 test cases, then M = 450 rows. While n is the number of 

matrices calculated from test cases and developers, where the total is 26. 

 

Find the usefulness of a test case 

In the previous model, the developer's understanding is measured using the actual and perceived understanding 

presented in the six understanding proxies. The six references are taken in the following context: The developer is 

given a piece of code, asked to read the code and answer the question: whether or not to understand the code. Last, 

they are given some questions related to the code. In terms of test case understanding, we use two proxies that derive 
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from two aspects of test code comprehension: the accuracy of the developer's response in evaluating the test case 

evaluation, and the time required to understand the test code.  There are two screens that can be extracted from 

Honfi's et al. Dataset: 

1. Actual Binary Understandability (ABU) 

2. Time Actual Understandability (TAU) 

 

 

 Classifier and Regression 
To construct a model for predicting ABUs and TAUs, we use various regressions and regression options that have 

been defined in the literature to compare their performance. In particular, we use the classifier algorithm for 

modeling ABU with binary classes: (i) decision tree C.45 (j48), (ii) the Byers network, (iii) auxiliary vector 

machines (SMO algorithms), and (iv) Multilayer Perceptron Network. We use a regression algorithm for modeling 

TAU and NTAU with numerical classes: (i) random forests, (ii) linear regression (iii) auxiliary vector machines 

(SMO algorithms), and (iv) multilayer perceptron networks. 

The ABU data were unbalanced, with 75% of the data presenting the correct answer from the respondent. We use 

the SMOTE filter on the training set to obtain a balanced model by generating artificial instances that represent 

incorrect answer data. It is important to have a compact subset feature, so we used principal component analysis to 

construct a set of values of linearly uncorrelated features. The ABU model is evaluated using AUC and F-measure 

for combined metrics, developer-related metrics, and test code metrics. The TAU model is interpreted using the 

Mean Absolute Error and Correlation Value because the approximate attribute is a numerical type. To trait and test 

the classification and regression models, a 10-cross validation technique is used. Its purpose is to avoid over fitting, 

the model is suitable only for nuances and cannot be generalized. The data is divided into ten partitions. Originally, 

nine partitions are used to build the model, and one partition is used to evaluate the model. Therefore, for each 

model created, it will be tested using data that is always different from training data. 

 

 

Evaluation Metrics 
To measure the performance of the classification model, we used the AUC and F-measure values. The AUC value 

represents the area under the ROC curve. The ROC curves described the performance of the model in classifying it 

into different threshold settings. The performance of the model is represented by real positive rate (sensitivity) 

values plotted on the y-axis and false-positive rate values plotted on the x-axis. AUC values are calculated using 

integral operation on RUC curves, whose values are in the range 0–1. The higher the AUC value, the better it is 

whether the model performs better in understanding the test case. F-measurement is one of the evaluation methods 

in classification models that mix recall and exact value. In a situation the value of recall and precision may have 

different weights. The F-measure introduces reciprocity between recall and precision, with the harmonic mean of 

recall and precision weighted. 

 

 

We used Pearson correlation and MAE (mean absolute error) in the equation to evaluate the performance of the 

prediction model. The MAE value represents the mean absolute error between the predicted value and the true value. 

The MAE is mathematically as follows: 

 

 

 

 

 

 

 

RESULT ANALYSIS 
The performance of SVFCS is assessed through measures based on Confusion Matrix. A confusion matrix (also 

called a contingency table) is a measurement table that relates the predicted results to the actual values of the 

dataset, and therefore, makes it possible to derive measures about the classifier's hits and misses. For a given model 

and set of examples, there are four possible outcomes associated with it. If the example is faulty (in the fault 

prediction approach) and it is predicted as faulty, it is counted as a true positive; If it is predicted as non-faulty, it is 

counted as a false negative. 
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If the instance is non-defective and is predicted as non-defective, it is counted as a true negative; If it is predicted as 

faulty, it is counted as a false positive. This two-by-two confusion matrix (for the binary class problem) forms the 

basis of many common metrics. Measurements based on the confusion matrix include accuracy, precision, recall and 

F-measure. These measures are widely used in the literature to evaluate the prediction results of a classifier. Next we 

told about all these measures. 

Receiver operating characteristics graph is a well-known technique for assessing the performance of classifiers. It is 

a two dimensional graph in which the abscissa represents the probability of false alarm or cost and the coordinate 

represents the probability of detection or profit. It can handle both discrete and continuous classifiers. Discrete 

classifiers only produce class levels, while continuous classifiers produce a curve. Each discrete classifier generates 

a pair of PF and PD which represent a point on the ROC graph. 

Some interesting points in the definition of the ROC curve include: 

(a) The point (0, 0) indicates that it will never trigger a false alarm and will never issue a positive classification. 

(b) Any point on the line drawn between (0, 0) to (1, 1) has no information. 

(c) The point (0, 1) denotes the ideal situation. But this is never achieved by any classifier. So any classifier located 

closer to this point is always better. 

Experiments were performed by dividing the total data set into training with 67% and testing with 33%. We repeated 

our experiments 10 more times on two well-known classifiers NB and SVM. The Iris and Pima Indians diabetes data 

sets are used for model validation. Our model on the iris data set gives 100% recall (detection probability also 

denoted as PD) and 0% false alarm rate (PF) with 100% accuracy, where on the Pima Indians diabetes data set it is 

68.6 % and gives 29.5% PD and PF. which is better than the previous known results (60% and 19%[23]), except for 

the PF which should be lower. The validation results using these two datasets show that we can use this model in 

software defect prediction. 

 

 

CONCLUSION  
We introduced a new approach to software identification Comprehension concerns comprehension from a summary 

of the issue using vague methods and linguistic patterns. We generated a set of unambiguous rules from the dataset 

given in , and evaluated the performance of these rules on 1416 issues detected in Testopia and Tomcat 7. The 

results show that our model can achieve a high performance with an average accuracy of 98%. , between the two 

systems an accuracy of 93%, a recall of 86%, and a measure of 90%. Therefore, we conclude that a fuzzy set of 

rules can effectively identify a summary of related issues that are understandable. We believe that our model 

contributes to existing quality assessment and management approaches. SVM, FIS and genetic algorithm are well 

known methods and used for classification in engineering and every branch of science. For the first time in this 

work, we combined these three learner gains to obtain a better prediction model. The model's performance is 

checked against an open source data project, where previous studies [10] have been evaluated on historical data sets 

that are publicly available but could not simplify the test work in actual development due to technological changes. . 

This study needs to be expanded for validation purpose. Initially it works on binary classification problem, we are 

planning to generalize this model for multi class problem. We also plan to investigate the effect of support vectors 

on the performance of other classifiers. 
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