
Vol-5 Issue-1 2019 IJARIIE-ISSN(O)-2395-4396

9532 www.ijariie.com 721

EVALUATION OF JOIN AND JOIN BASED

BLOOM FILTER ALGORITHMS IN

MAPREDUCE ENVIRONMENT

RAJAONARIVELO Maminiaina Andry Tahiana 1, RAKOTOMIRAHO Soloniaina2,

RANDRIAMAROSON Rivo Mahandrisoa3

1 PhD student, SE-I-MSDE, ED-STII, Antananarivo, Madagascar

2 Thesis director and Laboratory Manager, SE-I-MSDE, ED-STII, Antananarivo, Madagascar
3 Thesis co-director, SE-I-MSDE, ED-STII, Antananarivo, Madagascar

ABSTRACT

 MapReduce framework has become an attractive model to analyze a very large-scale data. One of the techniques that

framework is join algorithm. Join algorithm is a complex operation and quite expensive and require sophisticated

techniques. In this paper, we present strategies for two-way join relations in a MapReduce environment and study

their extension with Bloom Filter approaches. The aim of this work is to show that filters can eliminate the non-joining

data as early as possible in order to reduce the costs of disk I/O, communication network and CPU.

Keyword: - Big data, MapReduce, join algorithms, Bloom filter, Intersection Bloom Filter.

 1. INTRODUCTION
 Big data analysis or large-scale data analysis plays an important role in many disciplines especially in

business decision making activities. Thanks to e-commerce, social network, search engine, etc. of architecture

generate a large data composed of millions of servers. The information generated by its servers is measured in the

form of information that is considered to be accurate.

 The MapReduce programming model [1] has become popular for big data processing and analyzing large

datasets in parallel computing. Its success comes from facilities the process of large datasets in a reasonable amount

of time using a large cluster of commodity machines and hiding the details of parallelization, fault tolerance, and load

balancing in a simple programming interface. However, MapReduce has severe limitations to performing a join

operation with multiple input datasets. To join multiple datasets in MapReduce, all input records have to be sent from

map workers to reduce workers, regardless of the size of the joined records.

 In the classical context of relational databases, early elimination of useless data is a quite effective technique

to reduce the costs of the disk I/O, CPU and communication network of data processing algorithms. So we provide a

systematic study of joins with filters for early removal of non-participating tuples from the input datasets. The, we

compares the benefit by introducing filters in join algorithms in order to clarify the stakes to combine several entries

in MapReduce.

 The remainder of this paper is organized as follows: Section 2 summarizes the background and related work,

with special focus on MapReduce framework and join based Bloom filter. Bloom join and Join with Intersection

Bloom Filter were introduced in section 3. Section 4 describes the cost analysis for two way join. Experimental

evaluation will be described in Section 5. Section 6 concludes this paper.

Vol-5 Issue-1 2019 IJARIIE-ISSN(O)-2395-4396

9532 www.ijariie.com 722

2. BACKGROUND AND RELATED WORK

2.1 MapReduce

 MapReduce [1] is a programming model suitable for mass and parallel processing of large amounts of data,

executed on a large cluster of commodity machines and highly scalable on thousands of nodes (or machines). The

MapReduce architecture consists of a "JobTracker" service that can run on the "NameNode" server and receives "Jobs"

jobs from the client applications, and then sends tasks to the "TaskTracker" data nodes available. It allows users to

focus on their data operations without worrying about the implementation of features for parallel and distributed

processing.

 A MapReduce program consists of two distinct functions: map and reduce. The map function takes a input

key/value pairs (k1, v1) from a Distributed File System (or DFS) and produces a set of intermediate key/value pairs

list(k2, v2). The values in these intermediate pairs associated with the same key k2 are automatically grouped by the

framework and passed to the reduce function. The reduce function aggregates the values to produces final output

key/value pairs list(k3, v3). An execution overview of MapReduce is shown in Figure 1.

Fig -1: Execution overview of MapReduce

2.2 Bloom Filter

 A Bloom (BF) filter [2] is a probabilistic data structure used to test whether an element is a member of a set.

It consists of an array of m bits and k independent hash functions. All the bits in the array are initially set to 0. When

an element is inserted in the array, the element is hashed k times with k hash functions and the positions in the array

corresponding to the hash values are set to 1. For To test the membership status of an element, we evaluate this array.

If all the bits of the k hash positions of the element are 1, we can conclude that it is in the set. Bloom filters can

generate false positives, but false positives are not produced.

 A variant of a Bloom filter is Intersection Bloom filter [3], denoted IBF(S1∩ S2), is a probabilistic data

structure to check membership in the intersection of sets S1 and S2. Then, the IBF(S1∩ S2), is formed by crossing

BF(S1) and BF (S2) with the bit operator AND. The false positive probability of the intersection filter is estimated as

fInt representing one of the probabilities of two approaches to design the filter [3].

2.3 Join algorithms in MapReduce

 The processing of joins in MapReduce has become a very interesting topic of research since its introduction

by Google in 2004 [4,5,6,7,8]. Several studies have been conducted to analyze join requests for large datasets in a

MapReduce environment. So, many implementations on joins have appeared. However, the relative performance of

different algorithms depends on several parameters such as input size, data constraints, and so on Map-side join

[5,9,10] works by joining two sets of data on the map side without the shuffle and reduce phases. So this algorithm

requires some conditions on the input data sets. Each set of input data must be divided into the same number of

partitions, sorted by the join key, and must have the same set of keys. All tuples associated with the same key must

reside in the same artition in each dataset. In addition, Reduce-sideJoin [5,9,10,11] joins are more general than map-

side join for handling a join operation because input datasets are not subject to conditions. Only they incur additional

costs because both sets of data must go through the shuffle step in MapReduce.

Vol-5 Issue-1 2019 IJARIIE-ISSN(O)-2395-4396

9532 www.ijariie.com 723

 By analyzing Reduce-side join, we find that many intermediate pairs generated during the Map phase do not

participate in the join process due to the lack of correspondence with the pairs of another input dataset. Therefore,

eliminating non-matching data directly in the map phase is much more efficient. The semi-join [5] solves this problem

by using a distributed cache to broadcast a hash table of one of the input datasets on all mappers, and deleting tuples

whose join key is not in the hash table.

 However, if the hash table becomes very large, we may overload the memory and replication on all mappers

may be inefficient. To overcome this overhead in memory, Bloomjoin [12,8,13,14,15] is the solution because it

benefits from a Bloom filter [16] to perform existence tests in less memory than the list complete keys from the

hashmap. However, there is still a lot of mismatched data after filtering because the solutions can only filter on one of

the input datasets. Thus, the join based on the Intersection filter [3] could become a better solution to solve this problem

by eliminating mismatched data from the two input datasets.

3. FILTERING TWO WAY JOINS IN MAP REDUCE

 Consider two relations U1 and U2 of two-way join U1⋈U2. Let u1 (resp., u2) be the tuples of U1 (resp U2) and

k represent the join key attribute.

3.1 BloomJoin

 Bloomjoin (BJ) [12,8,14] is a type of join strategy based on the Bloom filter [9]. BJ is implemented by two

MapReduce tasks as follows:

• Job 1 (preprocessing) is a job with only one reducer. The mappers analyze the splits in the U2 input, which then

extract the value of the join key from each tuple and produce local Bloom filters. Local filters are passed to the reducer

by the mappers to merge them into a global filter BF(U2) using the OR in bits.

• Job 2 (processing) eliminates the mismatched n-tuples in U1 and joins the filtered result U1 to U2. It uses a distributed

cache to store BF(U2). The mappers analyze the divisions of U1 and U2 and eliminate the tuples of U1 whose keys are

not in BF(U2). U2 tuples are not filtered.

 Each tuple is then checked with a tag indicating its dataset name. In our example, the mappers issue tuples

marked with composite keys of the form ((u1.k, 'U1'), u1) or ((u2.k, 'U2'), u2). The gearboxes receive labeled tuples

grouped on the value k (this requires a slight change in the partitioning function). For each group, the reduce function

builds all the pairs (u1, u2) to complete the join.

 Note that it is necessary to override the default grouping function to ensure that the grouping of tagged tuples

takes into account only the join key part and ignores the tag portion. The tag is used for secondary sorting that ensures

that for a given key value, all tuples in U1 are processed before those in U2. This makes it possible to apply a hash join

to standard memory.

 One of the major problems with the filtering approach in general is the need to perform preprocessing work

for filter construction. In addition, the diffusion of the filter becomes ineffective if its size is large. Finally, it should

be noted that the BJ is asymmetric: the unpaired n-tuples of U2 have not been filtered, so the problem is half solved.

However, BJ takes advantage of the compactness of the Bloom filter to reduce the amount of data transferred over the

network. In addition, the size of the filter can be defined independently of the number of join keys. But, with a fixed

filter size, the probability f of false positives increases with the number of join keys.

3.2 Join based Intersection Bloom Filter

 We now describe an improvement of the above approach, the join based intersection Bloom filter [3], denoted

JIBF. It relies on the fact that only tuples whose join keys belong to the set of shared join keys participate in the result.

The implementation of the JIBF is carried out with the following works:

 • Job 1 (filtering) is a job with only one reducer. The groups of U1 and U2 are analyzed by the mappers, which then

extract the value of the join key for each tuple and insert them into the local Bloom filters, regardless of the duplicate

Vol-5 Issue-1 2019 IJARIIE-ISSN(O)-2395-4396

9532 www.ijariie.com 724

keys. Local filters are passed to the reducer by the mappers to merge them into two global filters BF(U1) and BF(U2)

using the OR in bits. And from one of the two approaches to construct the intersection Bloom filter [3], the reducer

calculates the IBF intersection filter (U1, U2) from the global filters.

• Job 2 (join) uses a distributed cache to provide IBF to all the compute nodes. The mappers analyze the divisions of

U1 and U2, extract the join key for each tuple, and compare it to the intersection filter. If the key v belongs to the

intersection filter, the tuple is issued as a pair ((v, tag), tuple). The evaluation of the join in the reduction phase is

similar to the algorithm of the Bloomjoin.

JIBF benefits from the standard functionality of Bloom filters: its small size, its independence from the number of

keys and their duplication, as well as the quick membership test. The join based on the intersection filter should be

more efficient than the Bloomjoin because of its ability to filter out the mismatched n-tuples of the two input datasets.

An interesting feature of the intersection filter is that if IBF (U1, U2) has all the null bits, the sets U1.k and U2.k are

disjoint and the evaluation of the join stops without anything make. However, the algorithm must pay the additional

cost of a MapReduce job for creating the intersection filter and requires the two input datasets to be scanned twice.

4. COST ANALYSIS FOR TWO WAY JOIN

 We note U and V the two input datasets, and analyze the cost for, respectively, the Bloom join (BJ) and the

join based intersection Bloom filter (JIBF). Table 1 summarizes the parameters of our cost model.

4.1 Join with Intersection Bloom Filter

 We adapt the cost model presented in [15]. We propose the following global formula that captures the cost

of a two-way join.

𝐶 = 𝐶𝑟𝑒𝑎𝑑 + 𝐶𝑓𝑖𝑙𝑡𝑒𝑟 + 𝐶𝑠𝑜𝑟𝑡 + 𝐶𝑡𝑟 + 𝐶𝑤𝑟𝑖𝑡𝑒 (1)

where

𝐶𝑟𝑒𝑎𝑑 = 𝑐𝑟. |𝑈| + 𝑐𝑟. |𝑉| (2)

𝐶𝑓𝑖𝑙𝑡𝑒𝑟 = 2. 𝑐𝑡 . 𝑚. 𝑟. 𝑡 (3)

𝐶𝑡𝑟 = 𝑐𝑡 . |𝐷| (4)

𝐶𝑠𝑜𝑟𝑡 = 𝑐𝑙 . |𝐷|. 2. (⌈𝑙𝑜𝑔𝐵|𝐷| − 𝑙𝑜𝑔𝐵(𝑚𝑡)⌉ + ⌈𝑙𝑜𝑔𝐵(𝑚𝑡)⌉) (5)

𝐶𝑤𝑟𝑖𝑡𝑒 = 𝑐𝑟. |𝑂| (6)

 In equation (1), we add the cost 𝐶𝑤𝑟𝑖𝑡𝑒and 𝐶𝑓𝑖𝑙𝑡𝑒𝑟 to the cost model described in [17]. 𝐶𝑤𝑟𝑖𝑡𝑒is the cost of

writing the final results. 𝐶𝑓𝑖𝑙𝑡𝑒𝑟 is a constant because the Map Reduce framework parameters, such as the size of a

Bloom filter m, the number of reduce tasks r, and the number of tasktrackers t, are set. The coefficient is multiplied

by two because local and intersection filters are transmitted between the jobtracker and the tasktrackers. If Bloom

filters are not used, 𝐶𝑓𝑖𝑙𝑡𝑒𝑟 is zero. | D |, the size of the intermediate data determines the total cost of the join operation.

Thus, we will analyze this parameter to decide the importance of the variant of the algorithm based on the filter.

Table -1: Parameters of the cost model for two-way joins

Parameter Explanation

|𝑈| The size of U

|𝑉| The size of V

|𝐷| The size of the intermediate data

𝑐𝑟 The cost of reading/writing data remotely

𝑐𝑡 The cost of transferring data from one node to another

𝑚 The compressed size of the Bloom filter (bits) m = the size of the Bloom filter × the file compression

ratio

𝑟 The number of reduce tasks

𝑡 The number of tasktrackers

𝑐𝑙 The cost of reading or writing data locally

𝑚𝑡 The total number of map tasks

𝐵 + 1 The size of the sort buffer in pages

|𝑂| The size of the join processing output

Vol-5 Issue-1 2019 IJARIIE-ISSN(O)-2395-4396

9532 www.ijariie.com 725

𝐶𝑟𝑒𝑎𝑑 The total cost to read the data

𝐶𝑓𝑖𝑙𝑡𝑒𝑟 The total cost to perform the filtering job

𝐶𝑡𝑟 The total cost to transfer intermediate data among the nodes

𝐶𝑠𝑜𝑟𝑡 The total cost to perform the sorting and copying at the map and reduce nodes

𝐶𝑤𝑟𝑖𝑡𝑒 The total cost to write the data on DFS

4.2 Cost Comparaison

 We evaluate | D |, for each algorithm mentioned in Sect. 3 and compare the costs. Importantly, we identify a

threshold that can guide the choice among these algorithms. We add the reduction side join (RSJ) to our comparison

to highlight the effect of filtering.

 We denote as δU and δV, respectively, the ratio of the joined records of U with V (resp. V with U). The size

of intermediate data is:

|𝐷| = {

𝜕𝑉|𝑈|+𝑓𝐼𝑛𝑡. (1 − 𝜕𝑉)|𝑈| + 𝜕𝑈|𝑉|𝑓𝐼𝑛𝑡 . (1 − 𝜕𝑈)|𝑉| (7)

𝜕𝑉|𝑈| + 𝑓(𝑉). (1 − 𝜕𝑉)|𝑈| + |𝑉| (8)

 |𝑈| + |𝑉| (9)

where

equation (7) for JIBF, denoted DJIBF,

equation (8) for BJ, denoted DBJ,

equation (9) for RSJ, denoted DRSJ,

𝑓𝐼𝑛𝑡 (U, V) is the false positive probability of the intersection filter IBF(U, V) [3],

and f(V) is the false positive probability of the Bloom filter BF(V).

We can deduce the following important evaluation from these equations.

THEOREM 1. An JIBF is more efficient than a BJ because it produces less intermediate data. Additionally, the

following inequality holds:

|𝐷|𝐽𝐼𝐵𝐹 < |𝐷|𝐵𝐽 < |𝐷|𝑅𝑆𝐽 (10)

where

DJIBF, DBJ, and DRSJ are the sizes of intermediate data of JIBF, BJ, and RSJ, resp.

PROOF. we get 0 < 𝑓𝐼𝑛𝑡 (U, V) < 𝑓𝐼𝑛𝑡 (V) < 1. We can therefore deduce

𝜕𝑈|𝑈|𝑓𝑖𝑛𝑡(𝑈, 𝑉). (1 − 𝜕𝑉)|𝑈| < 𝜕𝑉|𝑈| + 𝑓(𝑉). (1 − 𝜕𝑉)|𝑈| ≤ |𝑈| (11)

𝜕𝑈|𝑉|+𝑓𝐼𝑛𝑡(𝑈, 𝑉). (1 − 𝜕𝑈)|𝑉| ≤ |𝑉| (12)

Combining inequalities (11) and (12) into equations (7), (8) and (9), Theorem 1 is proved to be true.

From Eqs. (1) and (10), we can evaluate the total cost of the join operation for the different approaches.

THEOREM 2. The 𝐶𝑓𝑖𝑙𝑡𝑒𝑟filtering cost is negligible or less than the cost of non-matching data, then an JIBF has the

lowest cost. Also, we can derive a cost comparison for the total cost of the different approaches:

|𝐶|𝐽𝐼𝐵𝐹 < |𝐶|𝐵𝐽 < |𝐶|𝑅𝑆𝐽 (12)

where CJIBF, CBJ, and CRSJ are the total costs of JIBF, BJ, and RSJ, resp.

We can therefore deduce that the most efficient join approach is usually JIBF, the second is BJ and RSJ gives the poor

performance.

 For data localization optimization, the MapReduce framework executes the map task on a node where the

input data resides in the DFS and the data is retrieved directly. Thus, the cost of reading this phase is low. As a result,

the total 𝐶𝑓𝑖𝑙𝑡𝑒𝑟cost is negligible compared to the creation and transfer of redundant data on the network.

Vol-5 Issue-1 2019 IJARIIE-ISSN(O)-2395-4396

9532 www.ijariie.com 726

But, the intersection of filters in a join algorithm will become ineffective when there are a large number of map tasks

(𝑚𝑡), and very little redundant data in the join operation. In the case of so many map tasks, a tasktracker running

multiple map tasks will merge the local filters for each task and retain only two local filters BF(U) and BF(V). In the

case of small redundant data, we will not need to use the filtering job. It is for this reason that we need to estimate the

redundant data threshold so that the cost of the filtering job is less than the cost associated with the redundant data and

the intersection of the filters becomes more useful.

Let |D*| the size of the redundant or deleted data, 𝐶∗either outputs the total cost to sort and copy the redundant data

on the map and reduce nodes, and 𝐶𝑡𝑟
∗ is the total cost to transfer redundant data between them nodes. As a result, the

cost associated with redundant data is the sum of 𝐶𝑠𝑜𝑟𝑡
∗ and 𝐶𝑡𝑟

∗ .

THEOREM 3. The filter-based joins become a good choice when.

𝐶𝑓𝑖𝑙𝑡𝑒𝑟 < 𝐶𝑠𝑜𝑟𝑡
∗ + 𝐶𝑡𝑟

∗

Where

 |D*|=|U| + |V| - |D|,

 𝐶𝑡𝑟
∗ = 𝑐𝑡 . |𝐷∗|,

 𝐶𝑠𝑜𝑟𝑡
∗ = 𝑐𝑙 . |𝐷∗|. 2. (⌈𝑙𝑜𝑔𝑩|𝐷∗| − 𝑙𝑜𝑔𝑩(𝑚𝑡)⌉ + ⌈𝑙𝑜𝑔𝑩(𝑚𝑡)⌉) [17],

 𝑐𝑙: the cost of reading or writing data locally.

Based on the size of the intermediate data |D|, the threshold depends on ∂V (the recorded joint ratio of U with V) and

∂U (the registered join ratio of V with U).

5. EXPERIMENTAL EVALUATION

 In this section, we present experimental results of our implementation. All experiments were run on a cluster

of 5 machines that consists of 1 jobtracker and 4 tasktrackers. Each machine has 3.1 GHz quad-core CPU, 4GB

memory, and 100 GB SATA hard disk. The operating system is 64-bit Ubuntu 16.04, and the java version we used is

1.8.0.

 We implement the proposed architecture on Hadoop 3.0.1. The HDFS block size was set to 128MB. Each

tasktracker can simultaneously run 2 map tasks and 2 reduce tasks. The I/O buffer is set to 128KB, and the memory

for sorting data is set to 200MB.

5.1 Datasets

We use a data generation script of the Purdue MapReduce Benchmarks Suite [18], called “PUMA” to produce all test

datasets. PUMA represents a broad range of MapReduce applications exhibiting application characteristics with

high/low computation and high/low shuffle volumes. The maximum number of columns in the datasets is 25 and string

length in each column is set 15 characters. The dataset dataset1 contains the first column as a foreign key that refers

to the fifth column of the dataset dataset2. Table 2 summarizes the various dataset sizes used in our experiments.

Table -2: Input datasets

Inputs Test 1 Test 2 Test 3

size records size records size records

dataset1 10GB 26 839 442 30GB 79 441 142 50GB 131 908 690

dataset2 10GB 26 738 810 30GB 79 306 710 50GB 126 885 293

Total 20GB 53 578 252 60GB 158 747 852 100GB 258 793 983

For the three test datasets, such as Test 1, Test 2, and Test 3 that we use, we include two dataset1 and dataset1entries.

These tests have different sizes, namely 20 GB, 60 GB and 100 GB. All datasets are saved in the same text file format.

The following join query is performed on the dataset.

SELECT *

FROM dataset1(c0..c20) d1, dataset2(c0..c20) d2

WHERE d1.column0 = d2.column5 AND

Vol-5 Issue-1 2019 IJARIIE-ISSN(O)-2395-4396

9532 www.ijariie.com 727

d1.ROWNUM <= $number1 AND

d2.ROWNUM <= $number2

ORDER BY d1.column0

The query is executed by changing $number1 and $number2 to the number of records of the dataset1 and the dataset2,

respectively. An output tuple of the experiments t is defined by the concatenation of the pair of tuples of the first 21

columns that joined to produce the output.

5.1 Evaluation

In order to execute the Bloomjoin and the Join based Intersection Bloom Filter algorithms efficiently, we specified

the size of filters according to the cardinality of the join key values of datasets and chose the largest filter. There is a

tradeoff between m and the probability of a false positive. Hence, the probability of a false positive f is approximated

by:

𝑓 ≈ (1 − 𝑒−
𝑘𝑛

𝑚)
𝑘

For a given false positive probability f, the size of the Bloom filter m is proportional to the number of elements n in

the filter as shown in Table 3.

Table -3: Parameters of filters used in experiments

Tests Test 1 Test 2 Test 3

f 0.001 0.0001 0.0001

k 7 8 8

n 9910 10526 10526

m/n 15 21 21

m (bit) 148 650 221 046 221 046

where m/n is the number of bits allocated for each join key and k is the number of hash function.

 In [19] the parameters optimized for the filter (e.g. f, ρ and m) can be determined. However, in practice, it is

better to choose values less than an optimized value to reduce computational overhead. As shown in Table 3, the

values of of f, ρ and m/n in the experiments we conducted were deliberately chosen to determine if they could affect

the performance of the join. The filter files generated in the tests are compressed with gzip.

Table 4 gives the intermediate data size (Map output).

Table -4: Number of intermediate tuples (Map output)

Tests Test 1 Test 2 Test 3

IFBJ 28 969 90 956 162 810

BJ 26 851 277 79 497 558 132 005 845

RSJ 53 547 122 158 655 481 258 645 898

 In table 4, it was found that performing a single task does not bring any benefit to the Reduce-side join so it

is the most inefficient solution. This is correlated to the large size of intermediate data. Also the number of intermediate

tuples generated in this case is almost equal to the number of Map input records, see Tables 2 and 4.

Filter-based joins are more efficient in general. BJ and JIBF include the preprocessing job and the filtering operation

to improve the join performance.

The number of intermediate tuples produced by BJ is considerably reduced with respect to RSJ. However, in

comparison to JIBF (see in Table 4), BJ still produces much more intermediate data because the filtering operation is

only executed on one input dataset (dataset1). This situation is overcome by JIBF.

Looking at BJ and JIBF, Table 4 points out that BJ generates more intermediate data than JIBF. Namely, for the 100

GB test, BJ produces 132 005 845 intermediate tuples, whereas JIBF produces 162 810 tuples. The experiments

reported above are consistent with our theoretical analysis (Theorem 1);

Vol-5 Issue-1 2019 IJARIIE-ISSN(O)-2395-4396

9532 www.ijariie.com 728

Then, we evaluate the efficiency of these join algorithms by comparing the total execution time. In general fact, the

join algorithms generate less intermediate data turn out to be faster, even if we sum up the cost of the preprocessing

and join jobs.

Table 4 gives the total execution time of the filtering job and the join job for each algorithm. Regarding filtering, the

cost of the filter-based joins is related to the size of the data accessed to build the filter(s). In particular, JIBF has to

scan two input datasets. However, it pays off, since once the filters are available, the cost of join jobs is drastically

reduced.

Table -4: Execution of filtering job and join job (in minutes)

Join

algo.

Test 1 (20 GB) Test 2 (60 GB) Test 3 (100 GB)

Filtering

job

Join job Total

time

Filtering

job

Join job Total

time

Filtering

job

Join job Total

time

IFBJ 8.51 17.55 26.06 16.40 60.72 77.12 28.20 227.62 255.82

BJ 5.15 44.21 49.36 8.10 114.65 122.75 12.89 345.28 358.17

RSJ 0 74.80 74.80 0 210.41 210.41 0 373.00 373.00

Figure 2 demonstrates that the best execution results from using intersection filters. Their total execution time is

significantly reduced compared to BJ in spite of the time spent in the filtering job.

Fig -2: Total execution time

The total execution time of IFBJ increases from about 26.06 to 255.82 (mns), whereas that of BJ ranges from 49.36

to 358.17 (mns). The worst execution is RSJ, ranging 74.80 to 373 (mns). The smaller cost of IFBJ compared to the

others (Table 4), is analyzed in Theorem 2.

6. CONCLUSION

In this paper, we have presented join and join based bloom filter algorithms in the MapReduce framework. Filters are

known to greatly improve the cost of distributed joins thanks to their ability to avoid network transfer of useless data.

We have shown how to adapt join algorithms with filters, systematically. In addition, we model the cost that serves as

a benchmark for comparing the expected efficiency of joins. And then evaluate our algorithms on a complete set of

experiments to validate our models.

To conclude, join evaluation using filters is more efficient than other solutions since it reduces the need for s hipping

non-matching data. Future work will consist to evaluate our methods for multi-way joins.

Vol-5 Issue-1 2019 IJARIIE-ISSN(O)-2395-4396

9532 www.ijariie.com 729

7. REFERENCES

[1]. J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters”, Commun. ACM, Vol. 51,

No. 1, pp. 107–113, Jan. 2008.

[2]. B. H. Bloom. “Space/time trade-offs in hash coding with allowable errors”, Communications of the ACM

(CACM), Vol.13, No. 7, pp. 422–426, 1970.

[3] M. A. T. RAJAONARIVELO, S. RAKOTOMIRAHO, R. M. RANDRIAMAROSON “Improving two-way join

processing using bloom filter intersection in map reduce”, Vol.4, Issue-6,IJARIIE-ISSN(O)-2395-4396, 2018.

[4]. Afrati, F.N., Borkar, V .R. Carey, M.J., Polyzotis, N ., Ullman, J.D., “Map-reduce extensions and recursive

queries”, In: Proceedings of the International Conference on Extending Database Technology (EDBT), Uppsala,

Sweden, pp. 1–8, 2011.

[5]. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y., “A comparison of join algorithms for log

processing in mapreduce”, In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of

Data, SIGMOD 2010, pp. 975–986. ACM, New York, 2010.

[6]. Bruno, N., Kwon, Y., Wu, M.C., “Advanced join strategies for large-scale distributed computation”, Proc. VLDB

Endow. 7(13), pp. 1484–1495, 2014.

[7]. Hassan, M.A.H., Bamha, M., “Semi-join computation on distributed file systems using map-reduce-merge model”,

In: Proceedings of the Symposium on Applied Computing (SAC), Sierre, Switzerland, pp. 406–413, 2010.

[8]. Lee, T., Kim, K., Kim, H.J.: “Join processing using Bloom filter in MapReduce”, In: Proceedings of the RACS,

San Antonio, TX, USA, pp. 100–105, 2012.

[9]. Lee, K.H., Lee, Y.J., Choi, H., Chung, Y.D., Moon, B., “Parallel data processing with mapreduce: a survey”.

SIGMOD Rec. 40(4), pp. 11–20, 2012.

[10]. White, T., “Hadoop: The Definitive Guide. O’Reilly”, Sebastopol, 2012.

[11]. Liu, L., Y in, J., Gao, L.,“Efficient social network data query processing on MapReduce”, In: Proceedings of the

Workshop on HotPlanet, Hong Kong, China, pp. 27–32, 2013.

[12]. Lam, C., “Hadoop in Action”, Manning Publications, Greenwich, 2010.

[13]. Lee, T., Kim, K., Kim, H.J., “Exploiting bloom filters for efficient joins in MapReduce”. Inf. Int. Interdisc. J.

16(8), 5869–5885, 2013.

[14]. Zhang, C., Wu, L., Li, J., “Optimizing distributed joins with bloom filters using MapReduce”, In: Kim, T., Cho,

H., Gervasi, O., Yau, S.S. (eds.) GDC, IESH and CGAG 2012. CCIS, Vol. 351, pp. 88–95. Springer, Heidelberg,

2012.

[15]. Zhang, C., Wu, L., Li, J., “Efficient processing distributed joins with bloom filter using mapreduce”, Int. J. Grid

Distrib. Comput. (IJGDC) 6(3), pp. 43–58, 2013.

[16]. Bloom, B.H., “Space/time trade-offs in hash coding with allowable errors”, Commun. ACM 13(7), pp. 422–

426, 1970.

[17]. Nykiel, T., Potamias, M., Mishra, C., Kollios, G. and Koudas, N. 2010, “MRShare: sharing across multiple

queries in MapReduce”, Proc. VLDB Endow, Vol. 3, No.1 -2, pp. 494–505, Sept. 2010

[18]. Ahmad, F.: “Puma benchmarks and dataset downloads (2012)”. https://engineering.

purdue.edu/∼puma/datasets.htm, 2018.

[19]. Broder, A.Z., Mitzenmacher, M., “Survey: network applications of Bloom filters: a survey”. Internet Math. 1(4),

pp. 485–509, 2003.

