Experimental studies on the changes in the female gonad of immature and mature freshwater fish, *Heteropneustes fossilis* (Bloch)

Alka Singh, Research Scholar

House no. 94, Pushpakunj Mau Road, Khandari, Agra

&

Dr. Ranu Sharma, Astt. Prof., Deptt. of Zoology,

MJRP University, Jaipur (Rajasthan)

&

Dr. Jawed Ahmed Khan, Professor and Head, Deptt. of Zoology,

Saifia Science College, Bhopal(M.P.)

ABSTRACT

The present paper deals with the study of amino acids and lipid concentration in the immature and mature oocyte in the fish *Heteropneustes fossilis*. It was observed that the essential amino acids under the influence of gonadotrophins play a vital role in the gonadal maturation as well as in the synthesis of various enzymes needed for steroidogenesis. In the present study, the rate of incorporation of amino acids and their transformation in gonads indicate their vital role in the maturation of gonads. In addition to amino acids, the lipid fraction especially the ester cholesterol and the phospholipid were also found to play a significant role during the sequential changes which occur during maturation process of the gonads of heteropneustes fossilis.

The reproductive cycle of many fishes is reflected by significant changes in the size of the gonads throughout the year. The development of ovaries, maturation and ovulation in fish correlate with the rate of biosynthesis and plasma concentration of certain steroids and trophine hormones (4).

In most species, administration of an effective hormone may result in enhancement of maturation of oocyte without inducement of ovulation (1,3,5,8). Saxena Sahai and Jain reported in Blennius philis, Notopterus notopterus and Nandus nandus that the exogenous synthesis of protein yolk precursors occurs in the liver from where transported into the ovary through blood stream which accumulates in the cortical ooplasm and triggers the vitellogenesis. There is much evidence about the ovarian growth and maturation which are influenced by environmental factor in a number of teleost species, but relatively much little about role of external factors in controlling the final maturation and ovulation of the oocyte is known and hence, the present study was undertaken to assess the rate of incorporation of amino acid into the ovary and their role in the maturation of gonads, follicular epithelium, and ovulation in the fresh water fish, *Heteropneustes fossilis* (Bloch).

The experimental fishes were collected from local areas and acclimatized to the laboratory conditions in the aquarium tanks. Gonads were collected from immature and mature experimental female fish and subjected to biochemical methods to assess the free amino acids and lipid changes. Paper chromatographic methods were used for amino acids. Sache and wolfman (6) method was used for extraction of lipid from gonads.

Table-1 Amino acid contents of mature and immature oocytes in Heteropneustes fossilis.

S.No.	Amino acids	Immature	Mature
	G.S.I.	0.2632 ± 0.10593	0.4005 ± 0.0273
		$M\pm\sigma$	$M\pm\sigma$
1.	Hydroxyproline	0.32 ± 0.02	0.28 ± 0.0
2.	Glutamic acid+ Threonine	0.24 ± 0.03	0.21 ± 0.01
3.	Glycine+Serine	0.18 ± 0.02	0.23 ± 0.01
4.	Lysine	0.18 ± 0.19	0.15 ± 0.02
5.	Arginine	0.14 ± 0.02	-
6.	Histidine	0.12 ± 0.02	0.15 ± 0.02
7.	Valine+Methionine	0.05 ± 0.02	0.12 ± 0.02
8.	Leucine	0.02 ± 0.03	0.05 ± 0.01
9.	Ornithine	0.03 ± 0.01	0.09 ± 0.02

M = Mean

 σ = Standard Deviation

In the present study it was observed that the free amino acid composition of maturing and matured ovary is almost similar(table 1). The quantitative measurements also show that there is little variations between maturing and matured ovaries. It is interesting to know at these stages that the ovary contains all the essential amino acids. Among the amino acids recorded hydroxy proline, glutamic acid + Threonine Glycine + Serine, Lysine Arginine and Histidine are in higher concentrations where as valine + Methionine, Leucine and Ornithine are in lower concentrations(table 1).

It was further observed in immature female the phosphlipid, free cholesterol and triglyceride concentration is less when compared to the matured female. The Triglyceride content is very less in immature ovary but there is high accumulation of Triglycerides in mature ovary. The cholesterol ester is in higher concentration in immature ovary when compared to the matured ovary.

Our findings coincide with the results of the previous workers that maturation of the ovary depends mainly on the dietary protein content (2, 7). Moreover, the present work on concentration of amino acids and lipids in the mature and immature gonads correlate the higher concentration of amino acids and cholesterol during vitellogenesis.

It may, therefore be concluded on the basis of the above findings that in a mature oocyte, the higher concentrations of amino acids as well as the lipid especially the cholesterol, fatty esters and triglycerides are very well related with the maturation of oocyte and protein synthesis. It is quite probable as the exogenous synthesis of protein yolk precursor occurs in the liver released into the blood and transported to the ovary. (7)

References:

- 1. Chaudhary, H. (1976). J. Fish. Res.Biol. 33:940:-947
- 2. Dahlgren, B.T.(1980) J.Fish Biol.16 : 83-91
- 3. Fountains, M(1976) J Fish. Res.Bd.Can.33 : 922-939
- 4. Hiross, K.(1976). J.Fish, Res. Bd. Can. 33:989-993
- 5. Jalabert, B.C. (1976). J.Fish. Res. Bd. Can. 33:974-988
- 6. Sachs, B.A. and L. Wolfman,(1964) Thin layer Chromatography of blood lipids. Proc.Soc.Expl..Med 115:1138.
- 7. Saxena, R.C., Y.N. Sahai and S.M. Jain, (1985). Acta. Morphologica Neerl. Scand 22: 217-231.
- 8. Sunderraj, B.L. and S.V. Goswami, (1966). J. Exp. Zool. 161:287-296