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Abstract 

               The main aim of this paper is to consider the fuzzy normed spaces and define the fuzzy Banach  spaces  

and also the introduction of  fuzzy metric spaces of  its quotients and prove some theorems and lemma’s with the 

example. Based on the open  mapping and closed graph  theoremes on these fuzzy metric spaces.  
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1. Introduction 

     Many mathematicians have studied fuzzy normed spaces from several angles. The theory of fuzzy sets was 

introduced by L. Zadeh in 1965. The concept of fuzzy norm was introduced by Katsaras in 1984. Many 

mathematicians considered the fuzzy metric spaces in different view. First we recall the definition of continuous t-

norm, fuzzy metric spaces and Cauchy sequences introduced by George and Veermani .This paper introduced some 

theorems related to this concept as fuzzy convergence and fuzzy continuity.   

Definition 1.1 

          A binary operation    : [0, 1] × [0, 1]   [0, 1] is called a t-norm if ( [0, 1], *) is an abelian topological 

monoid with unit 1 such that a * b   c × d whenever  a   c and b  d for a, b, c, d  [0, 1]. 

 Examples of t-norms are a * b = a b and a * b = min{a, b}. 

Definition 1.2 

                   The 3 –tuple (X, M,   ) is said to be a fuzzy metric space if X is an arbitrary   set    is a continuous 

t-norm and M is a fuzzy set on     ( 0,   ) satisfying the following conditions for all x, y ,z   X and  

t, s  0 

(i)  M ( x,y,0)   0, 

(ii) M(x, y, t) =1 for all t   0 if and only if x =y, 

(iii) M(x, y, t) = M (y, x, t), 
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(iv) M(x, y, t)   M ( y, z, s)  M( x, z, t + s) for all t, s   0, 

(v) M(x, y,   ) : ( 0,  )   [ 0, 1] is continuous. 

Definition 1.3 

               A sequence {  } in a fuzzy metric space (X, M,   ) is a Cauchy sequence if and only if for each 

 0      1 and t   0 there exist      N such that for all n, m       we have  

M (       ,t )   1-  . 

A fuzzy metric space is said to be complete if and only if every  Cauchy sequence is convergent. 

Definition 1.4 

             The 3 – tuple  (X, N,   ) is said to be a fuzzy normed space if X is a vector space    is a continuous t-

norm and N is a fuzzy set on  

X   ( 0,   ) satisfying the following conditions for every  x, y    X and  

t, s  0: 

(i) M ( x, t)   0, 

(ii) M(x, t) =1  if and only if x =0, 

(iii) M(  x, t) = N (x, t/     ), for all   =0, 

(iv) M(x, t)   M ( y, s)  M( x,+y, t + s) for all t, s   0, 

                (v)   M(x,   ) : ( 0,  )   [ 0, 1] is continuous 

                (vi)        N(x, t) =1. 

Definition 1 .5 

                 Let ( X , N,   ) be a fuzzy normed space. We define the open ball 

 B(  x, r, t ) and the closed ball B[ x, r, t ] with center x    X and radius 

 0    t, t   0, as follows 

                 B( x, r, t )  ={y   X : N ( x-y, t)   1-r } 

                 B[ x, r, t ]   ={y   X : N ( x-y, t)   1-r }. 

Definition 1 .6 

              A fuzzy metric space (X, M,  ) is called compact if every sequence has a convergent subsequence.   

Definition 1 .7 

                 The fuzzy normed  space  ( X , N,   ) is said to be a fuzzy Banach space whenever X is complete 

with respect to the fuzzy metric induced  by fuzzy norm. 

Fuzzy  Norm Spaces 
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Lemma 2.1  

                Let N be a fuzzy norm. Then 

(i)  N(x ,t) is non decreasing with respect to t for each x   X. 

(ii)  N(x – y ,t)=N(y – x ,t). 

Proof: 

                Let t<s. Then k = s − t>0 and we have 

                             N(x, t ) = N(x, t)   1 

                                         = N(x, t)   N(0,k) 

                                         ≤ N (x, s). 

This proves the (i). To prove (ii) we have 

                          N(x − y, t) = N ( (−1)(y − x),t) 

                                           = N   y – x , 
 

    
 

                                          = N(y − x, t). 

 

Lemma 2.2  

             A fuzzy metric M which is induced by a fuzzy norm on a fuzzy normed space (X,N, ) has the following 

properties for all x,y,z   X and every scalar α  0 : 

                 (i) M(x + z , y + z, t)=M(x, y, t), 

                 (ii) M(αx , αy ,t)=M x, y, 
 

   
 

Proof 

             M (x + z ,y + z, t)=N((x + z) − (y + z), t) 

                                          = N(x − y, t)=M(x ,y, t) 

   Also,        M (α x, α y, t)=N(α x – α y, t) 

                                           = N  x − y, 
 

   
 

                                           = M x, y, 
 

   
 

Example  

                Let (x, k. k) be a normed space. We define a   b = a b or a   b = min(a ,b) and     N(x, t) = 
   

          
 

               Then (X, N,  ) is a fuzzy normed space. In particular if k = n = m = 1 we have N (x, t)=  
 

        
   which is 

called the standard fuzzy norm induced by norm ||.|| 
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Theorem 2.3 

            Let (X, M  ) be a fuzzy metric space with a   b = Min (a ,b). 

 Let    : X → X be a function with at least one fixed point    for each i = 1,2,···, and   : X → X be a fuzzy 

contraction mapping with fixed point x0. If the sequence (  ) converges uniformly to   , then the sequence (  ) 

converges to   .  

Proof: 

             Let k   (0, 1) and choose a positive number N     such that i ≥ N implies M (        ,(1−k) t) > 1− r 

where r   (0,1) and x   X.  Then, if i ≥ N,  

     we have             M(  ,   ,t)=M(        t) 

                                                 ≥ M (        (1−k) t)  M(        ,k t)  

                                                 > Min (1− r, M (  ,   , t)). 

                                        Hence, M (  ,   , t) → 1 as i →∞. 

This proves that (  ) converges to   . In what follows 

   : X ×Y → X will denote the first  projection mapping defined by  

   (x, y)=x, while   : X×Y → Y will denote the second projection mapping defined by    (x, y)=y. 

Lemma 2.4 

                 If (X, N, ) is a fuzzy normed space, then 

    (a) The function (x, y) → x + y is continuous,   

    (b) The function (α , x) → αx is continuous. 

Proof:  

           If    → x and    → y, then as n → ∞ ,  

 N ((   +    )−(x + y), t) ≥ N     − x, 
 

   
   N     − y, 

 

   
 → 1. 

This proves (a).  

         Now if    → x,    → α and     0 then 

N (     −    , t)= N(   (  − x)+x(  − α), t) 

                              ≥ N    (   − x), 
 

   
  N x (   − α), 

 

 
 

                             = N    − x, 
 

   
  N x, 

 

         
  → 1, 

as n → ∞ , and this proves (b).  
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Theorem 2.5 

               If M is a closed subspace of fuzzy normed space X and N(x+ M ,t) is defined as above then  

        (a) N is a fuzzy norm on X M. 

        (b) N (Q x, t) ≥ N(x ,t).  

        (c) If (X , N, ) is a fuzzy Banach  space, then so is (X  M,N, ). 

Proof: 

            It is clear that N(x + M , t) ≥ 0. Let N(x + M, t) = 1. 

      By definition there is a sequence {  } in M such that N(x +   , t) → 1.  

                                 So x +    → 0 or 

  equivalently   → (−x ) and since M is closed so x   M and x + M = M, the zero element of X   M.   On the other 

hand we have, 

                       N ((x + M)+(y + M), t)=N((x + y)+M, t) 

                                                            ≥ N((x + m)+(y + m),t) 

                                                             ≥ N(x + m,  )   N(y + m,   ) 

for m, n   M, x ,y   X and    +    = t. 

                Now if we take sup on both sides, we have,  

                         N ((x + M)+(y + M), t) ≥ N(x + M,   )   N(y + M,   ). 

 Also we have,               N (α (x + M) ,t)=N( x + M ,t) 

                                                                = sup {N( x +  y, t) :  y   M} 

                                                                = sup { N (x + y,  
 

   
) : y   M} 

                                                                = N(x + M , 
 

   
) 

                           Therefore (X, N,  ) is a fuzzy normed space.  

To prove (b) we have, 

                                         N (Q x, t)= N(x + M ,t) 

                                                         = sup {N(x + y, t) : y   M} 

                                                         ≥ N(x , t). 

             Let {   + M} be a Cauchy sequence in X∕ M.  Then there exists    > 0 such that    → 0 and,      N ((  + M) 

− (    + M) ,t) ≥ 1 −   . 

              Let    = 0. We choose       M such that, 

                           N(   − (   −  ),t) ≥ N((   −   )+M, t)   (1 −   ). 
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                          Bu t N ((  −   ) +M ,t) ≥ (1 −   ).  

Therefore,                 N(   − (   −   ),t) ≥ (1 −   )(1 −   ). 

            Now suppose      has been chosen,     M can be chosen such that 

             N ((     +     ) − (  +   ) ,t) ≥ N((     −(   )+M, t)   (1 −   −1), 

and therefore, 

                N ((     +      ) − (  +    ), t) ≥  (1 −    −1)   (1 −    −1). 

           Thus, {    +   } is a Cauchy sequence in X. Since X is complete, there is an     in X  such that                        

   +    →    in X. On the other hand 

                                  + M = Q (   +   ) → Q(  )=    + M. 

Therefore every Cauchy sequence {   + M} is convergent in X/M and so X/M is complete and ( X/M, N , ) is a 

fuzzy Banach space.  

Theorem 2.6.  

              Let (  ,   , ) and (  ,   , ) be fuzzy metric spaces un- der the same continuous t-norm   . Let U 

denote the neighborhood system in (        , ) and let V denote the neighborhood system in (     ,   , ) 

consisting of the Cartesian products     (r, t)×     (r, t) where         ,        , r   (0,1) and t >0. Then U and V 

induce the same fuzzy topology on (     ,   , ) . 

 Proof:  

                     Clearly, since   is continuous, U and V are bases for their respective topology. So, it is suffices to 

prove that for each      V there exists a       U such that    ⊆   , and 

 conversely. 

                     Let    ×      V . 

              Then there exist neighborhoods     (r, t) and     (r, t) contained in    and    respectively.  

                        Let r = Min(  ,   ), t = Min(  ,   ), and  

               let x =(   ,   ). Here, we shall show that    (r, t)     ×   .  

              Let y =(    ×   )       (r, t), 

  then we have   (  ,   ,   )=   (  ,   ,   ) 1 

                                               ≥   (  ,   ,   )    (  ,   ,   ) 

                                                ≥   (  ,   ,   , t)    (  ,   ,t)  

                                               = M(x ,y ,t) > 1−r 

                                                ≥ 1−   . 

 Similarly, 

                  we can show that   (  ,   ,   ) > 1−  .. Thus            (  ,   )and 
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            (  ,   ) which implies that    (r, t)      ×    . 

 Conversely,   suppose that    (r, t)   U.  

  Since   is continuous, there exists an η   (0, 1) such that (1−η)   (1−η) > 1−r. 

                        Let y   (y1  ,   )      (η, t)×     (η, t).  

                          Then M (x, y, t)=   (  ,   , , t)    (  ,   , t) 

                                                    ≥ (1−η)   (1−η)  

                                                    > 1−r 

               so that y      (r, t) and     (r, t)×     (r, t) ⊆    (r ,t).  

                           This completes the proof. 

Theorem 2.7.  

                  Let M be a closed subspace of a fuzzy normed  space  (X, N, t). If a couple of the spaces X, M, X/M 

are complete, so is the third one. 

Proof:  

               If X is a fuzzy Banach space, so are X/M and M.                                                                              

Therefore all that needs to be checked is that X is complete whenever both M and X/M are complete.  

Suppose M and X/M are fuzzy Banach spaces and let {  } be a Cauchy sequence in X.  

               Since  N((   −   )+ M, t) ≥ N(   −   , t) 

  whenever m ,n   N, the sequence {   +M} is Cauchy in X/M and so converges to y + M for some y   M.So there 

exists a sequence {  } such that   → 0 and 

               N ((   − y) + M ,t) > 1 −    for each t>0. 

             Now by last theorem there exists a sequence {  } in X 

      such that    + M = (   − y) + M and 

                                N (  , t) >N((   − y) + M, t)   (1 −   ). 

So                         N(  , t) ≥ 1 and    

                                           = 0.     

             Therefore {   −    – y } is a Cauchy sequence in M and thus is convergent to a point  z   M and  this 

implies that {  } converges to z + y and X is complete.  

Theorem 2.8. (Closed graph theorem) 

              Let T be a linear operator from the fuzzy Banach space (X,  ,  ) into the fuzzy Banach space (Y,   ,  ). 

Suppose for every sequence {  } in X 

 such that     → x and T   → y for some elements x   X and y   Y 

 it follows   = y. Then T is continuous. 



Vol-3 Issue-4 2017  IJARIIE-ISSN (O)-2395-4396   

6246 www.ijariie.com 1955 

Proof:  

           At first it is proved that the fuzzy norm N which is defined on X ×Y by, 

                                     N ((x, y),t)=    (x ,t)      (y, t) 

is a complete fuzzy norm. For each x ,z   X , y, u   Y and t, s > 0 it follows: 

                N((x ,y), t)   N((z ,u), s)=[    (x, t)      (y, t)]   [   (z, s)      (u, s)]                                                                                                                                          

                                                       =[    (x, t)      (z, s)]   [   (y, t)      (u, s)] 

                                                       ≤    (x + z, t+ s)      (y + u, t + s) 

                                                       = N ((x + z, y + u), t+ s). 

Now if {(  ,   )} is a Cauchy sequence in X × Y , then for ever   >0 and t >0 there exists      N such that for 

 m, n >   , 

                N((  ,   ) − (  ,   ), t) > 1 −   . 

So for m, n >    , 

                             (   −   , t)      (   −   , t)=N((   −   ,    −   ), t)  

                                                                    = N((  ,   ) − (  ,   ) ,t) 

                                                                     > 1 − . 

               Therefore {  } and {  } are Cauchy sequences in X and Y respectively and there exist x   X and y   Y 

such that    → x and    → y and consequently (  ,   ) → (x, y). Hence (X × Y, N,  ) is a complete fuzzy normed 

space.  

Theorem 2.9: 

                    Every identity fuzzy function is a fuzzy continuous function in fuzzy normed space.  

Proof:   

               For all      ( 0, 1), t  0  there exist     ( 0, 1),  S= t  0  

such that ,        ,x   X:  N (   –x ,S )   1     

              N (f (  ) – f (x) ,t ) = N (f (   – x) , t )  

                                              = N (    – x) , s )   1  –       1 –      

           Therefore f is a fuzzy continuous at x   , since  X is arbitrary point in  x. 

then f is a fuzzy continuous function. 
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