Fuzzy Almost Contra α-Continuous Function

M.Nandhini¹, M.Palanisamy²

¹Research scholar in MathematicsVivekanandha College of Arts and Sciences for Women(Autonomous) Namakkal, Tamilnadu, India

² Assistant professor Department of Mathematics Vivekanandha College of Arts and Sciences for Women (Autonomous) Namakkal, Tamilnadu. India

Abstract

In this paper we introduced and investigate Fuzzy Almost contra α -Continuous Function and fuzzy α -normal and related properties. And also we used to defined fuzzy α -connected fuzzy strongly normal and fuzzy α -continuous.

Key words:

Fuzzy -closed space, contra- α -continuous, fuzzy contra α -continuity, α -open set, fuzzy contra continuity.

1.Introduction

Joseph and kwack [7] introduce (θ, s) -continous function in order to investigate S-closed space due to Thompson [13] a function f is called (θ, s) continuous if inverse image of each regular open set is closed. Moreover, chang introduced fuzzy s-closed space in 1968. The purpose of this paper is to introduce forms of fuzzy almost contra continuous function and to investigate properties and relationships of fuzzy almost contra- α -continuous function. Also, by using this paper, properties of fuzzy almost contra-continuous function, fuzzy almost contra-free continuous function and fuzzy almost contra-semi continuous function can be obtained with similar way. The class of fuzzy sets on a universe X will be denoted by I^X and fuzzy sets on X will be denoted by Greek letters as μ, ρ, η , etc. A family τ of fuzzy sets in X is called a fuzzy topology for X if and only if (1) $\theta, X \in \tau, (2) \mu \wedge \rho \in \tau$ whenever $\mu, \rho, \in \tau$ (3), If $\mu_i \in \tau$ for each $i \in I$ then $\forall \mu_i \in \tau$. Moreover, the pair (X, τ) is called a fuzzy topology space. Every member of τ is called a fuzzy open set (9) In this paper, X and Y are fuzzy topological space. Let μ be a fuzzy set in X. We denote the interior and the closure of a fuzzy set μ by $int(\mu)$ and $cl(\mu)$, respectively. A fuzzy set μ in a space X is called pre-open [11] (resp. fuzzy semi-open [1]) if $\mu \leq (int(cl(\mu)))$. (resp. $\mu \leq cl(int(\mu))$). The complement of a fuzzy pre-open (resp. fuzzy) semi-open) set is said to be fuzzy pre-closed (resp. fuzzy semi-closed).

A fuzzy set μ in a space X is called fuzzy α -open [8] or fuzzy semi-open [12], if $\mu \leq cl(int(cl(\mu)))$. The complement of fuzzy α -open set is said to be fuzzy α -closed.Let μ be a fuzzy set in topological space X. The fuzzy α -closure and α -interior of μ are defined by as $\land \{\eta: \mu \leq \rho, \rho \text{ is } \alpha\text{-closed}\}, \lor \{\eta: \mu \leq \rho, \rho \text{ is } \alpha\text{-open}\}$, and denoted by $\alpha - cl(\mu)$ and α -int(μ), respectively. A fuzzy set in X is called a fuzzy singleton if and only if it takes the value 0 for all $y \in X$ except one say $x \in X$. If its value at x is $\varepsilon(0 < \varepsilon \leq 1)$ we denote this fuzzy singleton by x_{ε} where the point x is called its support (9). For any fuzzy singleton x_{ε} and any fuzzy set μ , we write $x_{\varepsilon} \in \mu$ if and only if $\varepsilon \leq \mu x$.

1.Fuzzy Almost Contra α-Continuous Function

Definition 1.1

Let X and Y be fuzzy topological spaces. A fuzzy function $f: X \to Y$ is said to be fuzzy almost contra α -continuous if inverse image of each fuzzy regular open set in Y is fuzzy α -closed in X.

Theorem 1.2

Let $f: X \to Y$ be fuzzy function and let $g: X \to X \times Y$ be the fuzzy graph function of f, defined by $g(x_{\epsilon}) = (x_{\epsilon}, f(x_{\epsilon}))$ for every $x_{\epsilon} \in X$. If g is fuzzy almost contra α -continuous.

proof

Let η be set in a fuzzy regular closed in *Y*, then $X \times \eta$ is a fuzzy regular closed set in $X \times Y$. Since *g* is fuzzy almost contra α -continuous Then $f^{-1}(\eta) = g^{-1}(X \times \eta)$ is fuzzy - α open in *X*. Thus *f* is fuzzy almost contra α -continuous.

Definition 1.3

A fuzzy filter base \wedge is said to be fuzzy α -convergent to a fuzzy singleton x_{ϵ} in X.thus if for any fuzzy α -open set η in X containing x_{ϵ} there exists a fuzzy set $\mu \leq \eta$.

Definition 1.4

A fuzzy filter base \wedge is said to be fuzzy rc-convergent to a fuzzy singleton x_{ϵ} in X if for any fuzzy regular closed set η in X containing x_{ϵ} there exists a fuzzy set $\mu \in A$ such that $\mu \leq \eta$

Theorem1.5

If a fuzzy function $f: X \to Y$ is fuzzy almost contra e-continuous, then for each fuzzy singleton $x_{\epsilon} \in X$ and each fuzzy filter base A in X α -converging to x_{ϵ} , the fuzzy filter base $f(\Lambda)$ is fuzzy rc-convergent to $f(x_{\epsilon})$.

Proof

For each fuzzy singleton $x_{\epsilon} \in X$ and each fuzzy filter base A in X α -converging to x_{ϵ} , the fuzzy filter base f(A) is fuzzy rc-convergent to $f(x_{\epsilon})$. Let $x_{\epsilon} \in X$ and be any fuzzy filter base in X α -converging x_{ϵ} . Since f is fuzzy almost contra α -continuous, then for any fuzzy regular closed set λ in Y containing $f(x_{\epsilon})$, There exists fuzzy α -open set μ in X containing x_{ϵ} such that $f(\mu) \leq \lambda$.

since A is fuzzy α -converging to x_{ϵ} . There exists a $\xi \in A$ such that a $\xi \leq \mu$ this means $f(\xi) \leq \lambda$ and therefore the filter base f(A) is fuzzy rc-convergent to $f(x_{\epsilon})$.

Definition 1.6

A space X is called fuzzy *e*-connected [3] if X is not the union of two disjoint nonempty fuzzy α -open sets.

Definition 1.7

A space X is called fuzzy connected [10] if X is not the union of two disjoint nonempty fuzzy open sets.

Theorem 1.8

If $f: X \to Y$ is almost contra α -continuous surjection and X is fuzzy α -connected, then Y is fuzzy connected.

Proof

Suppose that *Y* is not a fuzzy connected space. There exist nonempty disjoint fuzzy open sets η_1 and η_2 such that $= \eta_1 \lor \eta_2$. Therefore η_1 and η_2 are fuzzy clopen in *Y*. Since *f* fuzzy almost contra α -continuous $f^{-1}\eta_2$ and $f^{-1}(\eta_2)$ are fuzzy α -open in *X*. Moreover $f^{-1}(\eta_1)$ and $f^{-1}(\eta_2)$ are nonempty disjoint and $f^{-1}(\eta_1) \lor f^{-1}(\eta_2)$ this shows that *X* is not fuzzy α -connected. This contradicts that *Y* is not fuzzy connected assumed. Hence *Y* is fuzzyconnected.

Definition 1.9

A fuzzy space X is said to be fuzzy α -normal if every pair of nonempty disjoint fuzzy closed sets can be separated by disjoint fuzzy α -open sets.

Definition1.10

A fuzzy space X is said to be fuzzy strongly normal if for every pair of nonempty disjoint fuzzy closed sets μ and η there exist disjoint fuzzy open sets ρ and ξ such that $\mu \leq \rho, \eta \leq \xi$ and $cl(\rho)Vcl(\xi)=\emptyset$.

Theorem 1.11

If *Y* is fuzzy strongly normal and $f: X \to Y$ is fuzzy almost contra α -continuous closed injection, then *X* is fuzzy α -normal.

Proof

Let η and ρ be disjoint nonempty fuzzy closed sets of X. Since f is injective and closed. $f(\eta)$ and $f(\rho)$ are disjoint fuzzy closed sets. Since Y is fuzzy strongly normal, there exist fuzzy open sets μ and ξ such that $f(\eta) \leq \mu$ and $f(\rho) \leq \xi$ and $cl(\mu) \wedge cl(\xi) = \emptyset$. Then, since $cl(\mu)$ and $cl(\xi)$ are fuzzy regular closed and f is fuzzy almost contra- α -continuous, $f^{-1}(cl(\mu))$ and $f^{-1}(cl(\xi))$ are fuzzy α -open set. Since $\eta \leq f^{-1}(cl(\mu))$, $\rho \leq f^{-1}(cl(\xi))$ and $f^{-1}(cl(\mu))$ and $f^{-1}(cl(\xi))$ are disjoint, X is fuzzy α -normal.

Definition1.12

A space X is said to be fuzzy weakly T_2 if each element of X is an intersection of fuzzy regular closed sets.

Definition1.13

A space X is said to be fuzzy $\alpha - T_2[3]$ if for each pair of distinct points x_{ε} and y_v in X, there exits fuzzy α -open set μ containing x_{ε} and fuzzy α -open set η containing y_v such that $\mu \wedge \eta = \emptyset$.

Definition 1.14

A space X is said to be fuzzy α - $T_1[3]$ if for each pair of distinct fuzzy singletons x_{ε} and y_v in X, there exits fuzzy α -open set μ and η containing x_{ε} and y_v , respectively, such that $y_v \notin \mu$ and $x_{\varepsilon} \notin \eta$.

Theorem 1.15

If $f: X \to Y$ is almost contra α -continuous injection and Y is fuzzy Urysohn, then X fuzzy α - T_2 .

Proof

suppose that Y fuzzy Urysohn. By the injective of f it follows that $f(x_{\varepsilon}) \neq f(y_{\varepsilon})$ for any distinct fuzzy singletons x_{ε} and y_{v} in X. since Y is fuzzy Urysohn there exist fuzzy open sets η and ρ such that $f(x_{\varepsilon}) \in \eta$, $f(x_{\varepsilon}) \in \rho$ and $cl(\mathfrak{y}) \wedge cl(\rho) = \emptyset$. Since f is almost contra α - continuous there fuzzy α -open sets μ and ξ in X containing x_{ε} and y_{ν} respectively, such that $f(\mu) \leq cl(\eta)$ and $f(\xi) \leq cl(\rho)$. Hence $\mu \wedge \xi = \emptyset$. Show that X is fuzzy α - T_2 .

Theorem 1.16

If $f: X \to Y$ is almost contra e-continuous injection and Y is fuzzy weakly T_2 , than X is fuzzy α - T_2 .

Proof

Suppose that Y fuzzy weakly T_2 . For any distinct points x_{ϵ} and y_{ν} in X there exits fuzzy regular closed sets η, ρ in Y such that $f(x_{\epsilon}) \in \eta$ $f(y_{\nu}) \notin \eta$, $f(x_{\epsilon}) \notin \rho$ and $f(y_{\nu}) \in \rho$. since f is fuzzy almost contra α -continuous by theorem[2] $f^{-1}(\eta)$ and $f^{-1}(\rho)$ are fuzzy α -open subsets of X such that $x_{\epsilon} \in f^{-1}(\eta)$, $y_{\nu} \notin f^{-1}(\eta)$, $x_{\epsilon} \notin f^{-1}(\rho)$ and $y_{\nu} \in f^{-1}(\rho)$. This shows X is α - T_2 .

Theorem1.17

let (X_{i,τ_i}) be a fuzzy topological space for all $i \in I$ and I finite suppose that $(\prod_{i \in I} X_{i,\sigma})$ is a product space and $f: (X, \tau) \to (\prod_{i \in I} X_{i,\sigma})$ is any fuzzy function. If f is fuzzy almost contra α -continuous, then $pr_i \circ f$ is fuzzy almost contra α -continuous where pr_i is projection function for each $i \in I$.

Proof

Let $x_{\varepsilon} \in X$ and $(pr_i \circ f)(x_{\varepsilon}) \in \rho_i$ and ρ_i be fuzzy regular closed set in (X_{i,τ_i}) . Then $f(x_{\varepsilon}) \in pr_i^{-1}(\rho_i) = \rho_i \times \prod_{j \neq i} X_j$ a fuzzy regular closed sets in $(\prod_{i \in I} X_{i,\sigma})$. Since f is fuzzy almost contra α -continuous, there exists a fuzzy e-open set μ containing x_{ε} such that $f(\mu) \leq \rho_i \times \prod_{j \neq i} X_j = pr_i^{-1}(\rho_i)$ and hence $\mu \leq (pr_i \circ f)^{-1}(\rho_i)$ and obtain that $pr_i \circ f$ is fuzzy almost contra ε -continuous for each $i \in I$.

Definition1.18

The fuzzy graph G(f) of a fuzzy function $f: X \to Y$ is said to be fuzzy strongly contra- α -closed if for each $x_{\varepsilon}, y_{\varepsilon} \in (X, Y) \setminus G(f)$, there exist a fuzzy α -open set μ in X containing y_{ε} such that $\mu \times \eta \wedge G(f) = \emptyset$.

Theorem 1.19

If $f: X \to Y$ is fuzzy almost contra α -continuous and Y is fuzzy Uryshon G(f) is fuzzy contra- α - closed in $X \times Y$.

Proof

Suppose that *Y* is fuzzy Uryshon. let $x_{\varepsilon}, y_{\nu} \in (X, Y) \setminus G(f)$, it follows that $f(x_{\varepsilon}) \neq y_{\nu}$. since *Y* is fuzzy Uryshon, there exists fuzzy open sets η and ρ such that $f(x_{\varepsilon}) \in \eta$, $y_{\nu} \in \rho$ and $cl(\eta) \wedge (cl(\rho) = \emptyset$.Since *f* fuzzy almost contra- α -continuous, there exists a fuzzy *e*-open set μ in *X* containing x_{ε} such that $f(\mu) \leq cl(\eta)$.therefore, $f(\mu) \leq cl(\rho) = \emptyset$ and G(f) is fuzzy strongly contra- α - closed in $X \times Y$

2 The Relationships

In this section, the relationships between fuzzy almost contra α -continuous functions and the other forms are investigated.

Definition 2.1

A function $f: X \to Y$ is called fuzzy weakly almost contra *e*-continuous if for each $x \in X$ and each fuzzy regular closed set η of Y containing $f(x_{\varepsilon})$, there exists a fuzzy α -open set μ in $X x_{\varepsilon}$ such that $int(f(\mu)) \le \eta$.

Definition 2.2

A function $f: X \to Y$ is called fuzzy (α, s) -open if the image of each fuzzy α -open set is fuzzy semi-open.

Theorem 2.3

If a function $f: X \to Y$ is fuzzy weakly almost contra α -continuous and fuzzy (α, s) - open, then f almost contra α -continuous.

Proof

Let $x_{\varepsilon} \in X$ and η be a fuzzy regular closed set containing $f(x_{\varepsilon})$. Since f is fuzzy weakly almost contra α -continuous, there exists a fuzzy α -open set μ in X containing x_{ε} such that $int(f(\mu) \leq \eta)$. Since f is a (α, s) -open, $f(\mu)$ is a semi-open set in Y and $f(\mu) \leq cl(int(f(\mu))) \leq \eta$. This shows f almost contra α -continuous.

Definition 2.4

let X and Y be fuzzy topological spaces. A fuzzy function $f: X \to Y$ is said to be

(1) Fuzzy almost contra-pre-continuous if inverse image of each fuzzy regular open set in Y is fuzzy pre-closed in X.

(2) Fuzzy almost contra-semi-continuous if inverse image of each fuzzy regular open set in *Y* is fuzzy semi-closed in *X*.

(3) Fuzzy almost contra-continuous if inverse image of each fuzzy regular open set in *Y* is fuzzy closed in *X*.

Definition 2.5

A fuzzy space is said to be fuzzy P_{Σ} if for any fuzzy open set μ of X and each $x_{\varepsilon} \in \mu$, there exists fuzzy regular closed set ρ containing x_{ε} such that $x_{\varepsilon} \in \rho \leq \mu$.

Definition 2.6

A fuzzy function $f: X \to Y$ is said to be fuzzy *e*-continuous, if $f^{-1}(\mu)$ is fuzzy α -open in X for every fuzzy open set μ in Y.

Theorem 2.7

Let $f: X \to Y$ is said to be fuzzy function. Then if f is a fuzzy almost contra α -continuous and Y is fuzzy P_{Σ} , then f is fuzzy α -continuous.

Proof

Let μ be any fuzzy open set in Y. Since is fuzzy P_{Σ} , there exists a family ψ whose members are fuzzy regular closed set of f such that $\mu = \forall \{\rho : \rho \in \Psi\}$. Since f is fuzzy almost contra α -continuous, $f^{-1}(\rho)$ is fuzzy α -open in X for each $\rho \in \Psi$ and $f^{-1}(\mu)$ is fuzzy α -open in X Therefore, f is almost contra α -continuous.

Definition 2.8

A space is said to be fuzzy weakly P_{Σ} if for any fuzzy regular open set μ and each $x_{\varepsilon} \in \mu$, there exists a fuzzy regular closed set ρ containing x_{ε} such that $x_{\varepsilon} \in \rho \leq \mu$.

Definition 2.9

A fuzzy function $f: X \to Y$ is said to be fuzzy almost contra α - continuous at $x_{\varepsilon} \in X$ if for each fuzzy open set η containing $f(x_{\varepsilon})$, there exists a fuzzy α -open set μ containing x_{ε} such that $f(\mu) \leq int(cl(\eta))$.

Theorem 2.10

Let $f: X \to Y$ be a fuzzy almost contra α -continuous function. If Y fuzzy weakly P_{Σ} , then f fuzzy almost contra- α -continuous.

Proof

Let μ be any fuzzy regular open set of Y. Since Y is fuzzy weakly P_{Σ} there exists a family Ψ whose members are fuzzy regular closed set of Y such that $\mu = \vee \{\rho : \rho \in \Psi\}$. Since f is a almost contra α -continuous, $f^{-1}(\rho)$ is fuzzy α -open in X for each $\rho \in \Psi$ and f^{-1} is α -open in X. Hence, f is fuzzy almost α -continuous.

Definition 2.11

Let $f: X \to Y$ be a fuzzy is called fuzzy α -irresolute [4] if inverse image of each fuzzy α -open set is fuzzy α -open.

Theorem 2.12

Let X,Y,Z be a fuzzy topological space and let $f: X \to Y$ and $g: X \to Y$ be a fuzzy function. If f is fuzzy α -irresolute and g is fuzzy almost contra α - continuous then $g \circ f: X \to Z$ is a fuzzy almost contra- α continuous functions.

Proof

Let $\mu \leq Z$ be any fuzzy regular closed set and let $(g \circ f)(x_{\varepsilon}) \in \mu$. Then $g(f(x_{\varepsilon})) \in \mu$. Since g is fuzzy almost contra α - continuous function, it follows that there exists a fuzzy α -open ρ containing $f(x_{\varepsilon})$ such that $g(\rho) \leq \mu$. Since f is fuzzy α -irresolute function. It follows that there exists a fuzzy α -open set η containing x_{ε} such that $f(\eta) \leq \rho$ from here we obtain that $(g \circ f)(\eta) = g(f(\eta) \leq g(\rho) \leq \mu$.

This, we show that $g \circ f$ is a fuzzy almost contra- α -continuous.

Definition 2.13

A fuzzy function $f: X \to Y$ is called a fuzzy α -open set [3] if image of each fuzzy *e*-open set is fuzzy α -open.

Theorem 2.14

If $f: X \to Y$ is surjective fuzzy α -open function $g \circ f: X \to Y$ a is fuzzy almost contra- α -continuous, then g is fuzzy almost contra- α -continuous.

Proof

Suppose that x_{ε} is a fuzzy singleton in *X*. Let η be a regular closed set in *Z* containing $(g \circ f)(x_{\varepsilon})$. Then there exists a fuzzy α -open set μ in *X* containing x_{ε} such that $g(f(\mu)) \leq \eta$. Since *f* is fuzzy α -open , $f(\mu)$ is a fuzzy α -open set in *Y* containing $f(x_{\varepsilon})$ such that $g(f(\mu)) \leq \eta$. Thus implies that *g* is fuzzy almost contra- α -continuous.

Definition 2.15

A space X is said to be fuzzy α -compact [6] (fuzzy S-closed [2] if every fuzzy α -open (respectively fuzzy regular closed) cover of X has a finite subcover.

Theorem 2.16

The fuzzy almost contra- α -continuous images of fuzzy α -compact spaces are S-closed.

Proof

Suppose that $f: X \to Y$ is a fuzzy almost contra-*e*-continuous surjection. Let $\{\eta_i: i \in I\}$ be any fuzzy regular closed cover of *Y*.since *f* is fuzzy almost contra- α -continuous, then $\{f^{-1}(\eta_i): i \in I\}$ is a fuzzy α -open cover of *X* and hence there exists a finite subset I_o of *I* such that $X = \bigvee \{f^{-1}(\eta_i): i \in I_o\}$. Therefore, we have $Y = \bigvee \{f^{-1}(\eta_i): i \in I_o\}$ and *Y* is fuzzy *S*-closed.

Definition 2.17

A space X is said to be

(1) Fuzzy α -closed- compact [3] if every fuzzy α -closed cover of has a finite subcover,

Χ

(2) Fuzzy nearly compact (5) if every fuzzy regular open cover of *X* has finite subcover.

Theorem 2.18

The fuzzy almost contra- α -continuous images of fuzzy α -closed-compact space are fuzzy nearly compact.

Proof

а

Suppose that $f: X \to Y$ is a fuzzy almost contra-*e*-continuous surjection. Let $\{\eta_i : i \in I\}$ be any fuzzy regular open cover of *Y*. Since *f* is fuzzy almost contra- α -continuous, then $\{f^{-1}(\eta_i): i \in I\}$ is a fuzzy α -closed cover of *X*. Since *X* is fuzzy α -closed-compact .There exists a finite subset I_o of *I* such that $X = \bigvee \{f^{-1}(\eta_i): i \in I_o\}$. Thus, we have $Y = \bigvee \{\eta_i : i \in I_o\}$ and *Y* is fuzzy nearly compact.

Conclusion:

In this paper discussed Fuzzy Almost contra α -Continuous Function and fuzzy α -normal and related properties. And also we used to defined fuzzy α -connected fuzzy strongly normal and fuzzy α -continuous.

References

[1] K.K. Azad, On fuzzy semicontinuity fuzzy almost continuity and fuzzy continuity, j. Math. Anal. Appl.,82(1981),14-32.	weakly
[2] C.L Chang Fuzzy Topological spaces, J.Math. Appl., 24 (1968), 182-190.	
[3] E. Ekici On Fuzzy Function, Commun.Korean Math.Soc.,20(4) (2005), 781-	789.
[4] E. Ekici, and J.H. Park ,On fuzzy irresolute functions, Inter.J. Fuzzy Logic Inteligent Sys., 5(2) (2005), 164-168.	and
[5] A.H.Es, Almost compactness and near compactness in fuzzy topological spaces, Fuzzy sets and systems, 22(1987),289-295.	
[6] I.M Hanaf, A class of strong forms of fuzzy complete continuity, fuzzy sets system, 90 (1987), 349-353.	and
[7] J.E. Joseph and M.H. Kwack, on S-closed space, Proce. Amer. Math. Soc., 341-348.	80(1980),
[8] A.S. Mashhour, M.H. Ghaim and M.A Fath Alla, On fuzzy non-continuous Bull.Cal Math.Soc 78 (1986),57-69.	mapping,
[9] Parimala .M, Devi. R On fuzzy contra α -irresolute Maps. Fuzzy sets and 5908(2009),241-246.	system
[10] A.S.B Shahan, On fuzzy strongly semicontinuity and fuzzy precontinuity, sets and system s, 44(1991),303-391.	Fuzzy
[11] S.S Thakur and S.Singh, Fuzzy semipreopen sets and semi –precontinuity, sets and systems 98(1998),383-391.	fuzzy
[12] T. Thompson,S-closed spaces, Proc. Amer. Math soc,.60(1976), 335-338.	

IJARIE /