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Abstract 

 

The new second-order and third-order iterative methods without derivatives are presented for solving 

nonlinear equa- tions; the iterative formulae based on the homotopy perturbation method are deduced and 

their convergences are pro- vided. Finally, some numerical experiments show the efficiency of the 

theoretical results for the above methods. 
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1. Introduction 
 

In recent years, the scientists and engineers have devoted their attention to the application of the 

homotopy perturbation method in nonlinear problems, because this method is to continuously deform a 

difficult problem into a simple problem which is easy to solve. And the homotopy theory becomes a 

powerful mathematical tool, when it is successfully coupled with perturbation theory [1,7–14,16,17]. 

Considering the solution x* of a nonlinear equation 

( ) 0 (1)f x   

in [a, b], we have many different methods such as bisection method, fixed-point iteration, secant method, 

New- ton method, and so on. As is well known, the Newton method is a faster method than the other 

methods and is quadratically convergent, but computation of ( )f x  with ( )f x .the higher-orther method 

are presented  interpolation are proposed in [2] but there computational process in complex. in  - verse 

interpolation are proposed in [3] at least three-order method are presented , but they need to compute 

( ) 2 ( ) ( )f x f x f x   and 
2( )

( )
( )

f x

f x
. In [4-6] the exponential methods with transferring derivative are 

obtained by using the Liapunov method and Lambert technique , which are quadratically convergent. The 

iterative method of exponential descent with super-linear convergence and parametric iterative methods of 

quadratic convergence without the derivative are presented, respectively, but the defect is how to choose 
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the proper parametric values. Moreover, the homotopy techniques were applied to find all roots of a 

nonlinear equations in [7–15]. And different iterative formulae are derived, but they are needed to compute 

( ), ( ) ( )f x f x and f x   .And the convergence rates of these formulae are not given accurately. In 

this paper, we propose the new second-order and third-order iterative methods based on the homotopy 

perturbation theory. These methods do not need to compute the derivatives. Thereinto, the second-order 

iter- ative method has the same asymptotic error constant and the convergence rate compared with the 

Newton method. And the third-order iterative method has a faster rate of convergence and high 

precision compared with the Newton method and the new second-order iterative method. 

 

 

 

2. The construction of iterative methods 

 

    If we wish to find the solution in Eq. (1), we choose an auxiliary function 

   0g x  . It must be known or controllable and easy to solve. By the homotopy technique, we 

construct a homotopy  0.1R R   which satisfies 

                     , 1 0, , 0,1H x p pf x p g x x R P                           (2) 

where p is an imbedding parameter. Hence, it is obvious that 

                  ,0 0, ,1 0H x g x H x f x                                              (3) 

and the changing process of p from 0 to 1 is just that of  ,H x p  from  f x . In topology, this is called 

deforma- tion and  g x and  f x are considered to be homotopic. Applying the perturbation 

technique [1,17], due to the fact that 0 1p   can be considered as a small parameter, we can assume 

that the solution of Eq. (2) can be expressed as a series in p 

      2 3

0 1 2 3 .... 4x x px p x p x      

when 1p  ,Eq.(2) corresponds toEq.(1), (4) becomes the approximate solution of Eq. (1), i.e, 

    0 1 2 3
1

lim .....
p

x x x x x x


                                                          (5) 

To obtain its approximate solution of Eq.  (2) we first expand it into Tyler series  

             
2

2 2

0 0 1 2 0 1 2

1
... ...

2
g x g x g x px p x g x px p x                               (6) 

             
2

2 2

0 0 1 2 0 1 2

1
... ...

2
g x g x g x px p x g x px p x                               (7) 

Substituting (6) and (7) into (2), and equating the coefficients of like powers of p, we obtain 
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 

     

       

             

0 : 0
0

1: 0 (8)
0 1 0 0

12 2: [ ] 0
0 2 0 0 1 0 12

1 13 2: [ ] [ ] 0
0 0 0 0 0 0 03 1 1 2 2 12 3!

p g x

p g x x f x g x

p g x x f x g x x g x x

p g x x f x g x x g x x x f x g x x g x x



   

      

            

 

From the above Eqs. (8), if  ( ) 0
0

g x  , then 0 3x x can be solved, spectively, 0x   is the exact solution 

of  the auxiliary  function   0g x                                      (9) 

 

 

     

 

           

 
 

0

1

0

2

1 0 1

2

0

3

0 0 1 0 1 2 0 0 1 2 0 1

3

0

, (10)

1

2 , (11)

1 1

2 3! , 12

f x
x

g x

g x f x x g x

x
g x

g x f x x g x x x f x g x x x g x

x
g x

x

x






     




               



 

Due to the reason that  g x ,  g x ,  g x and  g x  must be known or controllable and are easy to 

be solved, so we can choose  g x as the following forms: 

1.  g x is a linear function, quadratic function, and so on; 

2.  g x is the part function of  f x . 

Particularly, if we choose the function      0 0g x f x f x    , 0x  is an initial approximation of 

Eq. (1), then from the above Eqs. (9)–(12), 0 3x x  can be solved, respectively, 
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 
 

 

 

 

 

 

 
 

 

 

 

 
 

2

20 0 0

1

0 0 0

30 0

1 2 1

0 0

0
, (13)

1
0

1 1
, 14

2 2! 2!

1
, 15

3 3!

f x
x

g x

f x f x f x
x

f x f x f x

f x f x
x x x

f x f x

x

x

 


    
     

    

 
  

 

 

Therefor we can obtain  

        0 1,x x x  with first- order approximation 

And  

        0 1 2x x x x   , with second- order approximation 

And  

       0 1 2 3x x x x x     , with third - order approximation 

We can write done the iteration forms of (13) – (15) as follows: 

 
 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

2

2

2 2

, (16)
1

17
1

1
(18)

1 2 6 2

n

n n n

n

n n n

n n n n n

n

n n n n n

f x
n

x x
n

g x
n

f x f x f x
x x
n f x f x f x

f x f x f x f x f xn
x x
n f x f x f x f x f x

n

f x

f x

 
 

    
         

  
           

                       
    

 
 

 

 

Obviously, the iteration formula (16) is the well-known Newton iteration formula. In order to avoid com- 

puting derivative, we replace  nf x and  nf x by the center difference 

                
( ) ( )

2

n nf x h f x h

h

  
 

And  

               
2

( ) ( ) 2 ( )n n nf x h f x h f x

h

   
 

respectively, here  nh af x  is a step size and 0   is a parameter. So we get the following second-

order iter- ative method: 

 1

2 ( )
19

( ) ( )

n

n n

n n

hf x
x x

f x h f x h
  

  
 

And the third - order iterative method: 

 

        

 

32 2

1

3 2

/ 3
lim (20)

2

n

n

n

f x f x f x f x
x x

x x f x

  




  

     




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respectively. So, the above iterative formulae do not need to compute  nf x and  nf x in every 

iteration. It is noticed that the  iterative  formula (18)  is at  least  cubically convergent  if we replace 

 nf x  by the  proper difference. For simplicity, we are not given the strict proof of the convergence rate 

of iterative formula (18) . 

 

 

 

3. The convergent proof of iterative formulae 

 

Theorem 1.  Let  nf x be continuous in a sufficiently small neighborhood of x
; and let   0f x  , 

  0f x  . Then the sequence  nx  produced by the iterative formula (19) is at least quadratically 

convergent, and the asymptotic error constant is 

                 

 

 
 

1

2
lim ,

2

n

n

f xx x

f xx x





 





 

Proof: Let n ne x x  , by using Taylors formula, we have  

   
       

2 2

2 22 2

/ 2 ,

1 1 3 / 2 ,

n n n n

n n n n

f x f e f o

f x h f f e af f f o

e e

e e 

   

          

 

Here    ,f f x f f x       therefore, there holds  

 2 32( ) ( ) 2 3n n n n n
f x h f x h f e f f oe e          

So we have  

 

 

 

 

1

2

1

2

2

( ) ( )

2

,

lim
2

n

n n

n n

n

n

n

n

n
n

hf x
e e

f f x h f x h

f o e

f o e

namly

e f

f

e

e







 
  

 


 






 

From Theorem 1, we concluded that the iterative formula (19) has the same asymptotic error constant 

and the same rate of convergence compared with the iterative formula (16).  

Theorem  2. Suppose  that  f x  be  continuous  in  a  sufficiently  small  neighborhood  of x
,  and  if  f(x)  

satisfy   0f x  ,   0f x  , then the sequence  nx  produced by the iterative formula (20) is at least 

cubically convergent and is of the following asymptotic error constant: 
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 

        

 

32 2

1

3 2

/ 3
lim

2

n

n

n

f x f x f x f x
x x

x x f x

  




  

     





 

Proof: Let n ne x x  , by using Taylors expansion, we have  

   
     

     

2 3 3

32 2

3 3 32

/ 2 / 6 ,

1 1 3 / 2

3 1 1 / 3

n n n n n

n n n

n n

f x f e f f o

f x h f f e af f f

f f f f f f o

e e e

e

e e

 

   

     

         

           
 

 

Here      , ,f f x f f x f f x           . Therefore, there holds 

   
   

2 3 32 2 3 3

2 3 32 2 2 2 2 2

( ) ( ) 2 3 3 4 / 3

( ) ( ) 2

n n n n n n

n n n n n n

f x h f x h f e f f f f f f f o

f x h f x h f e f f f f f f o

e e e

e e e

    

  

               

             

 

By using a similar method to that used in the proof of Theorem 1, we have 

 

 

     

 

   

 

 

2

1 3

2 2 3

2

2 2 3

1

2 2

4 ( ) ( ) 22

( ) ( ) ( ) ( )

/ 3

2

,

/ 3
lim ,

2

n n n nn

n n

n n n n

n

n

n

n

n
n

hf x f f x h f x h f xhf x
e e

f f x h f x h f f x h f x h

f f f f o e

f o e

namly

f f f fe

f

e

e











     
  

       

     


 

    




 

compared with the iterative formulae (16) and (19) .  

 

 

 

4.  Numerical experiments 

 

By finding the solution x  of the nonlinear equation   0f x   in a given interval  ,a b , we compare 

the iter- ative methods (19) and (20) with the Newton method (16). 

Starting with the same initial value x0, we compute the approximation xn+1 of solution x  in a given 

interval  ,a b .The stopping criterion is 
1 610

n n

n

x x

x

 


  and   6

1 10nf x 

  .For the convenience of 

comparison, we choose the same parameter values in the iterative formulae (19) and (20) (see Tables 1–8). 

 

Table 1 

The iterations of solving Example 1 
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Table 1 

The iterations of solving example 1 

Initial values 

𝑥0 

Formula (16) Parameter 

value𝛼 

Formula (19) Formula (20) 

𝜋
3⁄  5 0.1 5 4 

−𝜋
6⁄  5 0.1 5 4 

𝜋
5⁄  4 0.1 4 3 

 
Table 2 

The iterations of solving example 2  
Initial values 

𝑥0 

Formula (16) Parameter 

value𝛼 

Formula (19) Formula (20) 

5 Divergent 0.01 Divergent  6 

1 Divergent 0.01 Divergent 7 

4 4 0.01 4 4 

 
Table 3 

The iterations of solving example 3 

Initial values 

𝑥0 

Formula (16) Parameter 

value𝛼 

Formula (19) Formula (20) 

5 27 0.1 10 5 

0.1 4 0.1 4 3 

1 4 0.1 4 3 

 
Table 4 

The iterations of solving example 4 

Initial values 

𝑥0 

Formula (16) Parameter 

value𝛼 

Formula (19) Formula (20) 

4 5 0.1 5 3 

20 5 0.1 5 3 

10 4 0.1 4 2 

 
Table 5 

The iterations of solving example 5 

Initial values 

𝑥0 

Formula (16) Parameter 

value𝛼 

Formula (19) Formula (20) 

4 Divergent 0.1 Divergent 5 

0.5 5 0.1 5 3 

1.5 5 0.1 5 3 
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Table 6 

The iterations of solving example 6 

Initial values 

𝑥0 

Formula (16) Parameter 

value𝛼 

Formula (19) Formula (20) 

2 11 0.001 11 8 

1 8 0.001 8 7 

1.2 5 0.001 5 4 

 
Table 7 

The iterations of solving example 7 

Initial values 

𝑥0 

Formula (16) Parameter 

value𝛼 

Formula (19) Formula (20) 

2 7 0.01 7 5 

-1 9 0.01 9 6 

1 5 0.01 5 4 

 
Table 8 

The iterations of solving example 8 

Initial values 

𝑥0 

Formula (16) Parameter 

value𝛼 

Formula (19) Formula (20) 

1.5 5 0.1 10 5 

1 4 0.1 4 3 

0.4 6 0.1 4 3 

 
Example 1 

                  2sin 1 , , , 0.52359877559830
6 3

f x x x x
   

     
 

 

Example 2 

                  sin 1 , 1,4 , 1.69681238680975xf x e x x x      

Example 3 

                  arctan sin 2 , 0.1,5 , 0.71858676906358f x x x x x x       

Example 4 

                   2 3, 4,20 , 11.f x x x x      

Example 5 

                  ln , 0.5,4 , 1.f x x x x    

Example 6 

                   10 32 1 , 1,2 , 1.11033918535812f x x x x x x       

Example 7 

                     
52 1 , 1,2 , 0.34595481584824f x x x x x       
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Example 8   

                     23 , 0.4,1.5 , 0.91000757248871.xf x e x x x     

The above numerical results show that the iterative formulae (19) and (20) without computing 

derivatives are at least quadratically convergent and maintain the convergent and computational 

efficiency. In many cases, compared with the Newton method, the iterative times are relatively less and 

the rate of convergence is faster. 

 

Conclusion  

In this work we present a new higher-order iterative method for solving non-linear equation which 

requires two function and higher- order derivatives evaluations per step, it was compared in its 

performance to some higher-order methods, and the proposed method has been observed to have at 

least better performance and more stability. 
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