
Vol-5 Issue-2 2019 IJARIIE-ISSN(O)-2395-4396

9810 www.ijariie.com 1253

IMPLEMENTATION OF LNS BASED

APPROXIMATE LOGARITHMIC

MULTIPLIER USING OPERAND

DECOMPOSITION METHOD

Yesodha.P
1
,Roshini.S

2
, Sowmiya.R

3

1
 Asst. Prof, ECE, Prince Shri Venkateshwara Padmavathy Engineering College, Tamil Nadu, India

2
 Student, ECE, Prince Shri Venkateshwara Padmavathy Engineering College, Tamil Nadu, India

3
Student, ECE, Prince Shri Venkateshwara Padmavathy Engineering College, Tamil Nadu, India

ABSTRACT
 Generally multiplication consumes more power, area and are complex. Multiplication plays a vital role in

implementation of many Digital Signal Processing (DSP) applications. One feasible alternative solution to simplify

multiplication in the use of Logarithmic Number System, instead of binary. For exact fixed-point multiplication a

matrix multiplier is usually used. The LNS based Approximate Logarithmic Multiplier implemented using Mitchell’s

algorithm significantly reduces area, power and time delay while having low worst-case error which are used in the

application of Convolutional neural networks. Mitchell algorithm is done by taking logarithm for the two binary

inputs, adding them and finally taking antilogarithm for the added result. Thus, the multiplication is converted to

addition. The proposed system, operand decomposition shows a significant increase in the amount of accuracy over

the existing method when applied to the logarithmic multiplication. Operand Decomposition performs Mitchell

algorithm twice according to the method, in order to improve the accuracy.
.

Keyword: -convolution neural network, Mitchell’s algorithm, low worst case error, operand decomposition,

digital signal processing.

1. INTRODUCTION

Multiplication plays a significant role in Digital signal processing (DSP) applications. It uses tasks such as

Finite Impulse Response filtering, Fast Fourier Transform, and Discrete Cosine Transform, which involve heavy use

of arithmetic operations such as addition, multiplication, and division. These algorithms involve repetitive

multiplications which require more time. In DSP applications, time is a crucial factor than accuracy. The Digital

Image processing applications like medical imaging, satellite imaging, Biometric trait images etc…, rely on

multipliers to improve the quality of image. Various researches are going on to optimize the multipliers in terms of

speed, area and power or a combination of these parameters. The traditional multipliers use large amount of

hardware and are power hungry.

1.1 LNS

One of the alternate solutions is the implementation of Logarithmic Number System (LNS) in multipliers.

However, there is trade-off between the low accuracy from LNS with the computation speed. Hence these

multipliers are restricted to signal processing applications where accuracy is not only of prime importance but also a

certain degree of error can be tolerated.

Several approaches have been suggested in the literature for improving the efficiency of logarithm based

arithmetic. They can be broadly classified as

Vol-5 Issue-2 2019 IJARIIE-ISSN(O)-2395-4396

9810 www.ijariie.com 1254

 Look Up Table (LUT)-based interpolation and

 Mitchell’s algorithm-based logarithm computation.

1.1.1 LUT

 A LUT, which stands for Look Up Table, in general terms is basically a table that determines what the

output is for any given input(s). In the context of combinational logic, it is the truth table. This truth table

effectively defines how your combinatorial logic behaves.

1.1.2 MITCHELL’S ALGORITHM-BASED LOGARITHM COMPUTATION

 Mitchell’s Algorithm(MA) approach is more popular method than LUT due to less complex hardware

consumption which conserves the area. Piecewise linear approximation of the log curve introduces significant

percentage of error into the system. This error percentage increases relatively with the increase of number of ‘1’ bits

in mantissa. By successive multiplications, error in MA algorithm can be reduced because of the fact that error

is always positive in this case. Error can be approximated to arbitrary value by introducing suitable error

correction with iteration.

2. PROPOSED METHOD

 In this method, the proposed new design flow power logarithmic multiplication approach is aimed to

achieve faster computation. Multiplication is a significant operation in signal processing but slow and complex

leading to high power consumption and area. Digital Signal Processing repetitively uses multiplication to carry out

computations. LNS based methods mitigate time and power but with the compromise for introducing some errors.

Operand decomposition method reduces the error rate and improves the accuracy rate.

2.1 OPERAND DECOMPOSITION

 The proposed, operand decomposition approach is to improve the accuracy of Mitchell’s Algorithm is

described in this section. The operand decomposition approach previously has been used to reduce switching

activity in binary multipliers. In this work, the use of operand decomposition is for MA based LNS multiplication.

The operand decomposition of two n-bit binary numbers X and Y to four n-bit binary numbers A, B, C and D is

performed using the following equations, a = x & y , b = x | y, c = (~x) & y and d = x & (~y). The product of the

number X and Y is then computed from the decomposed operands using the equation 1.

 X * Y = (C* D) + (A * B) 1

 The approach increases the number of zero bits in the decomposed multiplications and hence decreases the

switching power in the multiplication operation. An example illustrating the operand decomposition approach for

the binary multiplication. The example illustrated, shows the logarithmic multiplication of integers 18 and 60. Since

the operand decomposition strategy increases the number of zeroes in the multiplicands, the value of the fraction

part in logarithmic approximation decreases and hence the error. Secondly, the DA and other correction term based

approaches tries to follow the logarithm curve closely by adding the average error slack. The operand decomposition

process increases the flexibility in selecting the coefficients for these equations. Next, the explaination of the

functional architecture of the Operand Decomposed (OD)-Mitchell’s logarithm multiplication algorithm.

 DESCRIPTION-Two inputs with n numbers of bits are taken and directed towards OD block for and the

two inputs are divided into four for further process.

 LOGARITHM-Here multiplication is the main process. Logarithm is used for converting multiplication

into addition so the hardware complexity is being reduced.

 ADDER-Adder is used to add the input values. Two types of adder is used here, namely half adder and

full adder.
 ZERO DETECTOR- Zero detector is used to detect whether the inputs are zero.

Vol-5 Issue-2 2019 IJARIIE-ISSN(O)-2395-4396

9810 www.ijariie.com 1255

 ANTILOGARITHM-After applying MA the result is concatenated with 1 and number of zeros is

appended based on MSB position

Fig 1 OD BLOCK

2.1.1 PROCESS

 Two binary inputs X and Y are given in binary form. X and Y are divided into A, B, C, and D. Taking MA

separately for A, B and C, D. LOD detects the leading bit position. If the leading ‘1’ is in 7th position the inputs are

directly entered to the barrel shifter else ENC and NOT gate will decide the shifting count. L-Barr shift will then do

the left shifting operation. Adder will do the further adding operation of the inputs. Is Zero block is used to check the

two input values. So, if any one of the input is zero it will directly give the result as zero instead of doing all the

operation. Here multiplication is converted as addition. The results are added and concatenated with 1 and number

of zeros is appended based on MSB position.

2.1.2 OD PROCEDURE

Step1: X, Y: n-bit binary multiplicands, OP=0:2n-bits approximate product.

Step 2: Calculate A, B, C, D value using X and Y.

Step 3: Calculate A using the equation A=X|Y.

Step 4: Calculate B using the equation B=X&Y.

Step 5: Calculate C using the equation C= (~X) &Y.

Step 6: Calculate D using the equation D=X& (~Y).

Step 7: To take MA for A and B.

 A, B: n-bit binary multiplicands, OP1= 0: 2n-bits approximate product.

 Determine K1, leading ‘1’ position of 1st number, A

 Determine K2, leading ‘1’ position of 1st number, B

Vol-5 Issue-2 2019 IJARIIE-ISSN(O)-2395-4396

9810 www.ijariie.com 1256

 Evaluate X1 by shifting A by N-K1 bits towards left

 Evaluate X2 by shifting B by N-K2 bits towards left

 Calculate K12=K1+K2

 Calculate X12=X1+X2

 Decode K12 and insert ‘1’ in that position of OP1

 Append X12 immediately after this one in OP1

 A.B= OP1
Step 8: To take MA for C and D.

 C, D: n-bit binary multiplicands, OP2= 0: 2n-bits approximate product.

 Determine K1, leading ‘1’ position of 1st number, C

 Determine K2, leading ‘1’ position of 1st number, D

 Evaluate X1 by shifting C by N-K1 bits towards left

 Evaluate X2 by shifting D by N-K2 bits towards left

 Calculate K12=K1+K2

 Calculate X12=X1+X2

 Decode K12 and insert ‘1’ in that position of OP2

 Decode K12 and insert ‘1’ in that position of OP2

 C.D= OP2
Step 9: Adding OP1 and OP2 we get OP

 OP=OP1+OP2.

2.1.3 OD EXAMPLE
Step 1: Inputs

 X=10001100(140), Y=00100101(37).

Step 2: Calculate A, B, C, D value using X and Y.

Step 3: A=X|Y

 A= (10001100) | (00100101)

 A=10101101

Step 4: B=X&Y

 B= (10001100) & (00100101)

 B=00000100

Step 5: C= (~X) &Y

 C= (01110011) & (00100101)

 C=00100001

Step 6: D=X& (~Y)

 D= (10001100) & (11011010)

 D=10001000

Step 7: Take MA for A and B

 Inputs

 A=10101101,

 B=00000100

 MSB position of ‘1’ for K1 in binary form

 MSB of A is ‘7’

 K1=111

 MSB position of ‘1’ for K2 in binary form

 MSB of B is ‘2’

 K2=010

 After left shifting A

 MSB of A is 7. So left shift by 0 (~ (K1))

 X1=0101101

 After left shifting B

Vol-5 Issue-2 2019 IJARIIE-ISSN(O)-2395-4396

9810 www.ijariie.com 1257

 MSB of B is 2. So left shift by 5 (~ (K2))

 X2=0000000.

 Adding K1 and K2

 K12=K1+K2

 K12=111+010=1001.

 Adding X1 and X2

 X12=X1+X2

 X12=0101101+0000000

 X12=0101101.

 Concatenate 1 an X12

 OP1= (1, X12)

 OP1=1010110100

Step 8: Take MA for C and D

 Inputs

 C=00100001,

 D=10001000.

 MSB position of ‘1’ for K1in binary form

 MSB of C is ‘5’

 K1=101

 MSB position of ‘1’ for K2in binary form

 MSB of D is ‘7’

 K2=111

 After left shifting C

 MSB of C is 5. So left shift by 2 (~ (K1))

 X1=00001

 After left shifting D

 MSB of D is 7. So left shift by 0 (~ (K2))

 X2=00010

 Adding K1 and K2

 K12=K1+K2

 K12=101+111=1001

 Adding X1 and X2

 X12=X1+X2

 X12=00001+00010

 X12=00011

 Concatenate 1 an X12

 OP2= (1, X12)

 OP2=1000110000000

Step 9: Adding OP1 and OP2

 OP=OP1+OP2

 OP=0000001010110100+001000110000000

 OP=0010110000110100(5172)

3. ERROR PERCENTAGE
 It can be obtained

 Error %= ((Original value-Obtained value)/Original value)*100
Error %= ((5180-5172)/5180)*100
Error %= 0.15

ACCURACY%=100-ERROR%

ACCURACY%=100-0.15=99.85.

Vol-5 Issue-2 2019 IJARIIE-ISSN(O)-2395-4396

9810 www.ijariie.com 1258

TABLE 1 COMPARISON BETWEEN MITCHELL’S AND OPERAND DECOMPOSITION ALGORITHM

4. RESULT

The simulation of OD algorithm in which the variable x indicates the input X and y indicates the input Y. The

variable a,b,p,q indicates the splitted output of the input X and Y. OP1 indicates the mitchell’s output of

splitted variable of a and b whereas the OP2 indicates the mitchell’s output of splitted variable of p and q. OP

indicates the final output of OP simulation which is the added value of the OP1 and OP2

FIG 2 SIMULATION OF OD

5. CONCLUSION

 In this work, we use operand decomposition for Mitchell algorithm based LNS multiplication. The

proposed operand decomposition approach to improve the accuracy of Mitchell’s Algorithm is described. Further

the few methods which could make the system much better in terms of power and area could be implemented here

by using various algorithms so that the throughput of the system will be increased and can be further used in many

applications which involves multiplication in it. Also the methods of obtaining maximum accuracy without making

the system complex

6. REFERENCE

[1]. Babic, Z. and Avramovic, A. and Bulic, P.(2010) ‘An iterative logarithmic multiplier’.

[2].Babic, Z. and Avramovic, A. and Bulic, P.(2008) ‘An Iterative Mitchell's Algorithm Based Multiplier’.

[3].Deeksha, R.S. and Patil, S.(2013) ‘Improving Accuracy in Mitchell’s Logarithmic Multiplication Using

Iterative Multiplier for Image Processing Application’.

Vol-5 Issue-2 2019 IJARIIE-ISSN(O)-2395-4396

9810 www.ijariie.com 1259

[4]. Durgesh, N. and Kanungo, J. and Mahajan, A.(2017) ‘An efficient VLSI architecture for Iterative

Logarithmic Multiplier’.

[5].Khalid, H.A. and Raymond, E.S. (2003) ‘CMOS Implementation of low power logarithmic converter’.

