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ABSTRACT 
 Generally multiplication consumes more power, area and are complex. Multiplication plays a vital role in 

implementation of many Digital Signal Processing (DSP) applications. One feasible alternative solution to simplify 

multiplication in the use of Logarithmic Number System, instead of binary. For exact fixed-point multiplication a 

matrix multiplier is usually used. The LNS based Approximate Logarithmic Multiplier implemented using Mitchell’s 

algorithm significantly reduces area, power and time delay while having low worst-case error which are used in the 

application of Convolutional neural networks. Mitchell algorithm is done by taking logarithm for the two binary 

inputs, adding them and finally taking antilogarithm for the added result. Thus, the multiplication is converted to 

addition.  The proposed system, operand decomposition shows a significant increase in the amount of accuracy over 

the existing method when applied to the logarithmic multiplication. Operand Decomposition performs Mitchell 

algorithm twice according to the method, in order to improve the accuracy. 
. 

Keyword: -convolution neural network, Mitchell’s algorithm, low worst case error, operand decomposition, 

digital signal processing.

1. INTRODUCTION 
 

Multiplication plays a significant role in Digital signal processing (DSP) applications. It uses tasks such as 

Finite Impulse Response filtering, Fast Fourier Transform, and Discrete Cosine Transform, which involve heavy use 

of arithmetic operations such as addition, multiplication, and division. These algorithms involve repetitive 

multiplications which require more time. In DSP applications, time is a crucial factor than accuracy. The Digital 

Image processing applications like medical imaging, satellite imaging, Biometric trait images etc…, rely on 

multipliers to improve the quality of image. Various researches are going on to optimize the multipliers in terms of 

speed, area and power or a combination of these parameters. The traditional multipliers use large amount of 

hardware and are power hungry.  

1.1 LNS 

One of the alternate solutions is the implementation of Logarithmic Number System (LNS) in multipliers. 

However, there is trade-off between the low accuracy from LNS with the computation speed. Hence these 

multipliers are restricted to signal processing applications where accuracy is not only of prime importance but also a 

certain degree  of error  can be  tolerated. 

Several approaches  have been suggested  in  the literature for improving  the efficiency  of logarithm based  

arithmetic. They can be broadly classified as  
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 Look Up Table (LUT)-based interpolation and  

 Mitchell’s algorithm-based logarithm computation. 

1.1.1 LUT 

 A LUT, which stands for Look Up Table, in general terms is basically a table that determines what the 

output is for any given input(s). In the context of combinational logic, it is the truth table. This truth table 

effectively defines how your combinatorial logic behaves. 

 

1.1.2 MITCHELL’S ALGORITHM-BASED LOGARITHM COMPUTATION 

 Mitchell’s Algorithm(MA)  approach is more popular method  than  LUT due to less complex hardware 

consumption  which conserves the  area. Piecewise linear approximation of the log curve introduces significant 

percentage of  error into the system. This error percentage increases relatively with the increase of number of ‘1’ bits 

in mantissa.  By successive multiplications, error in  MA algorithm  can  be reduced  because of the fact  that  error 

is  always  positive in this case.  Error can be approximated to arbitrary value by introducing suitable error 

correction with iteration.   

 

2. PROPOSED METHOD 

 In this method, the proposed new design flow power logarithmic multiplication approach is  aimed to 

achieve faster computation. Multiplication is a significant operation in signal processing but slow and complex 

leading to high power consumption and area. Digital Signal Processing repetitively uses multiplication to carry out 

computations. LNS based methods mitigate time and power but with the compromise for introducing some errors. 

Operand decomposition method reduces the error rate and improves the accuracy rate. 

2.1 OPERAND DECOMPOSITION 

 The proposed, operand decomposition approach is to improve the accuracy of Mitchell’s Algorithm is 

described in this section. The operand decomposition approach previously has been used to reduce switching 

activity in binary multipliers. In this work, the use of operand decomposition is for MA based LNS multiplication. 

The operand decomposition of two n-bit binary numbers X and Y to four n-bit binary numbers A, B, C and D is 

performed using the following equations, a = x & y , b = x | y, c = (~x) & y and d = x & (~y). The product of the 

number X and Y is then computed from the decomposed operands using the equation 1. 

          X * Y = (C* D) + (A * B)                                                                               1 

 The approach increases the number of zero bits in the decomposed multiplications and hence decreases the 

switching power in the multiplication operation. An example illustrating the operand decomposition approach for 

the binary multiplication. The example illustrated, shows the logarithmic multiplication of integers 18 and 60. Since 

the operand decomposition strategy increases the number of zeroes in the multiplicands, the value of the fraction 

part in logarithmic approximation decreases and hence the error. Secondly, the DA and other correction term based 

approaches tries to follow the logarithm curve closely by adding the average error slack. The operand decomposition 

process increases the flexibility in selecting the coefficients for these equations. Next, the explaination of  the 

functional architecture of the Operand Decomposed (OD)-Mitchell’s logarithm multiplication algorithm. 

 DESCRIPTION-Two inputs with n numbers of bits are taken and directed towards OD block for and the 

two inputs are divided into four for further process.  

 LOGARITHM-Here multiplication is the main process. Logarithm is used for converting multiplication 

into addition so the hardware complexity is being reduced.  

 ADDER-Adder is used to add the input values. Two types of adder is used here, namely half adder and 

full adder. 
 ZERO DETECTOR- Zero detector is used to detect whether the inputs are zero.  
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 ANTILOGARITHM-After applying MA the result is concatenated with 1 and number of zeros is 

appended based on MSB position      

 

Fig 1 OD BLOCK 

2.1.1 PROCESS 

  Two binary inputs X and Y are given in binary form. X and Y are divided into A, B, C, and D. Taking MA 

separately for A, B and C, D. LOD detects the leading bit position. If the leading ‘1’ is in 7th position the inputs are 

directly entered to the barrel shifter else ENC and NOT gate will decide the shifting count. L-Barr shift will then do 

the left shifting operation. Adder will do the further adding operation of the inputs. Is Zero block is used to check the 

two input values. So, if any one of the input is zero it will directly give the result as zero instead of doing all the 

operation. Here multiplication is converted as addition. The results are added and concatenated with 1 and number 

of zeros is appended based on MSB position.   

 

2.1.2 OD PROCEDURE 

 

Step1: X, Y: n-bit binary multiplicands, OP=0:2n-bits approximate product.  

Step 2: Calculate A, B, C, D value using X and Y.  

Step 3: Calculate A using the equation A=X|Y.  

Step 4: Calculate B using the equation B=X&Y.  

Step 5: Calculate C using the equation C= (~X) &Y.  

Step 6: Calculate D using the equation D=X& (~Y).  

Step 7: To take MA for A and B. 

 A, B: n-bit binary multiplicands, OP1= 0: 2n-bits approximate product.  

 Determine K1, leading ‘1’ position of 1st number, A  

 Determine K2, leading ‘1’ position of 1st number, B  
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 Evaluate X1 by shifting A by N-K1 bits towards left  

 Evaluate X2 by shifting B by N-K2 bits towards left  

 Calculate K12=K1+K2  

 Calculate X12=X1+X2  

 Decode K12 and insert ‘1’ in that position of OP1  

 Append X12 immediately after this one in OP1  

 A.B= OP1  
Step 8: To take MA for C and D. 

 C, D: n-bit binary multiplicands, OP2= 0: 2n-bits approximate product.  

 Determine K1, leading ‘1’ position of 1st number, C  

 Determine K2, leading ‘1’ position of 1st number, D  

 Evaluate X1 by shifting C by N-K1 bits towards left  

 Evaluate X2 by shifting D by N-K2 bits towards left  

 Calculate K12=K1+K2  

 Calculate X12=X1+X2  

 Decode K12 and insert ‘1’ in that position of OP2  

 Decode K12 and insert ‘1’ in that position of OP2  

 C.D= OP2  
Step 9: Adding OP1 and OP2 we get OP 

 OP=OP1+OP2.  
 

2.1.3 OD EXAMPLE 
Step 1: Inputs  

 X=10001100(140), Y=00100101(37).  

Step 2: Calculate A, B, C, D value using X and Y. 

Step 3: A=X|Y  

 A= (10001100) | (00100101)  

 A=10101101  

Step 4: B=X&Y  

 B= (10001100) & (00100101)  

 B=00000100  

Step 5: C= (~X) &Y  

 C= (01110011) & (00100101)  

 C=00100001  

Step 6: D=X& (~Y)  

 D= (10001100) & (11011010)  

 D=10001000  

Step 7: Take MA for A and B 

 Inputs  

 A=10101101,  

 B=00000100 

 MSB position of ‘1’ for K1 in binary form  

 MSB of A is ‘7’  

 K1=111 

 MSB position of ‘1’ for K2 in binary form  

 MSB of B is ‘2’  

 K2=010 

 After left shifting A  

 MSB of A is 7. So left shift by 0 (~ (K1))  

 X1=0101101 

 After left shifting B  
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 MSB of B is 2. So left shift by 5 (~ (K2))  

 X2=0000000. 

 Adding K1 and K2  

 K12=K1+K2  

 K12=111+010=1001. 

 Adding X1 and X2  

 X12=X1+X2  

 X12=0101101+0000000  

 X12=0101101. 

 Concatenate 1 an X12  

 OP1= (1, X12)  

 OP1=1010110100 

Step 8: Take MA for C and D 

 Inputs  

 C=00100001,  

 D=10001000. 

 MSB position of ‘1’ for K1in binary form  

 MSB of C is ‘5’  

 K1=101 

 MSB position of ‘1’ for K2in binary form  

 MSB of D is ‘7’  

 K2=111 

 After left shifting C  

 MSB of C is 5. So left shift by 2 (~ (K1))  

 X1=00001 

 After left shifting D  

 MSB of D is 7. So left shift by 0 (~ (K2))  

 X2=00010 

 Adding K1 and K2  

 K12=K1+K2  

 K12=101+111=1001 

 Adding X1 and X2  

 X12=X1+X2  

 X12=00001+00010  

 X12=00011 

 Concatenate 1 an X12  

 OP2= (1, X12)  

 OP2=1000110000000 

Step 9: Adding OP1 and OP2  

 OP=OP1+OP2  

 OP=0000001010110100+001000110000000  

 OP=0010110000110100(5172) 

 

 

 

 

3. ERROR PERCENTAGE 
 It can be obtained   

 Error %= ((Original value-Obtained value)/Original value)*100 
Error %= ((5180-5172)/5180)*100  
Error %= 0.15 

ACCURACY%=100-ERROR% 

ACCURACY%=100-0.15=99.85. 
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TABLE 1 COMPARISON BETWEEN MITCHELL’S AND OPERAND DECOMPOSITION ALGORITHM 

 

 

4. RESULT 

The  simulation of OD algorithm in which the variable x indicates the input X and y indicates the input Y. The 

variable a,b,p,q indicates the splitted output  of  the input  X  and Y. OP1 indicates the mitchell’s output of  

splitted variable of a and b whereas the OP2 indicates the mitchell’s output of splitted variable of p and q. OP 

indicates the final output of OP simulation which is the added value of the OP1 and OP2 

 

                 

FIG 2 SIMULATION OF OD 

5. CONCLUSION 

 In this work, we use operand decomposition for Mitchell algorithm based LNS multiplication. The 

proposed operand decomposition approach to improve the accuracy of Mitchell’s Algorithm is described. Further 

the few methods which could make the system much better in terms of power and area could be implemented here 

by using various algorithms so that the throughput of the system will be increased and can be further used in many 

applications which involves multiplication in it. Also the methods of obtaining maximum accuracy without making 

the system complex 
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