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Abstract 

Most of the applications in cloud domains such as online data processing, Froud detection, large scale 

sensor network etc. where large amount of data should processed in real time. Earlier, for data stream 

processing, the centralized system environment was using with store and then process paradigms. After 

that some advancement has been introduced with distributed environment for data stream processing. 

Data Stream processing using novel computing paradigm which take query as input and splits that 

query into multiple sub queries and process the data on multiple sub clusters in such a way that 

reduces the distribution overheads. This kind of application generates very high input data which needs 

to process with the available clusters So High availability and elasticity are two key characteristics on 

the cloud computing services. High availability ensures that the cloud applications are sensible to 

failure. Elasticity is a key feature of cloud computing where availability of resources are related with 

the runtime demand. So in this paper we present a comprehensive framework for obtaining elasticity 

and scheduling technique for highly availability. 
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Introduction  

Number of real time applications in which large amounts of data should process continuously. But 

there are some limitation comes with the traditional store the process paradigm [1]. So for overcoming 

this issue, some advancement has been presented in the stream process engines. Stream process engines 

are computing systems which are designed to process continuous stream of input data with the 

minimum time delay. Instead of store then process, in this system data streams are process on the fly 

using continuous queries. This is due to the amount of input data which discourage persistent storage 

and the prompt result requirement. Here the query is continually standing in streaming tuple and 

produces continues output. 

Here in this system there is substantial development in the stream processing engine. Earlier it was 

running on the centralized stream processing engine [2]. Centralized engine using store then process 

paradigm which causes unnecessary value storage and other limitations. But now it’s also running on 

the distributed environment. With distributed environment stream process engine distributes different 

queries among a cluster of nodes which we is called it as interquery parallelism or distributing different 

operators of the query across different nodes which is called as interoperator parallelism [3].  Most of 

the applications for scalable stream processing engine which need to aggregate the computing power of 

hundreds which need to process the millions of tuples per second. Here for obtaining higher scalability 

and avoiding the single node bottleneck problem stream process engine need to lies in distributed 

stream process engine with intra operator parallelism [4]. 

While doing the query parallelization, this requires to addressing additional number of challenges. 

Query parallelization should be semantically and syntactically transparent. Semantic transparent means 

query should produce exact the same output like non parallel queries. Syntactically transparency means 

the query should get automatically parallelized. It should be oblivious to the user. While doing 

parallelization, usage of resources should also be the cost effective. The parallel stream process engine 

should be elastic and it should manage the amount of its resources to the workload. The elasticity also 
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combined with the dynamic load balancing technique. It should able to manage load across available 

nodes or the clusters.  

In this paper we are presenting as inproved real time data elasticity on stream cloud [6] and elastic 

stream process engine which provides a transparent query parallelization. That is stream processing 

engine will accept the input query which is automatically paralyzed. This query will splits in multiple 

sub query and process individual sub query on clusters of nodes [6]. Stream process engine handles the 

stream of tuples. A stream is potentially infinite sequence of tuples which is sharing a given schema. 

All tuples having a time stamp attribute which sets at the data source [7]. The data source has clocks 

which are synchronized with the other system nodes. When clock synchronization is not feasible tuple 

can be time stamped at the entry point of the data streaming system. In SPE, query is defined as a 

cyclic graph where as node is an operator and edges defines the data flow. Here focus has given on 

stateless and steteful operators [8]. Stateless operator does not keep any state across tuples and perform 

computing operation only based on input tuple. (eg. Map,union and filter. Stateful operators perform 

computation operations on sliding windows of tuple defined over a fixed time period (eg. Aggregate, 

cartision product and join). 

So in the proposed system stream cloud gives high scalability, reliability for stream processing engines. 

The input queries which are executing are automatically and all tuples provide transparent 

parallelization. System gives high scalability by giving interoperator parallelism. 

System also contains load balancing, task assignment and scheduling for the execution nodes which 

executes its operation based on available execution information. Additionally system calculates the 

execution power capacity of each node. So execution task assignment can be performed efficiently 

System also uses heart bit technology which gives node alive status with transferring the signals in 

between each others for informing the live status. 

Literature Survey:  

A literature survey includes related work in the data stream processing in the stream line cloud for real 

time data processing which shows the system reliability and scalability. Some of legacy applications 

and most of the real time applications data processing should be continuous. So for such applications 

we need to use stream process engines. There has been advancement from centralized to distributed 

environment. There is a substantial change from store then process to tuple-on-the fly. It is also called 

as continues queries in which queries are continuously standing with a streaming data for real time 

processing. while doing the parallel stream processing, attention must be given at stateful operators 

(Aggregate, joins and Cartesian products)  and stateless operators (map unions and filters) .Also here 

the basically two factors has for number of hops performed by each tuple and communication fan out 

0f each node has considered. Here there are different strategies for parallelization such as, 

Operator cloud strategy 

In the operator cloud strategy, the query parallelization unit is a single operator. So each of input data 

deployed on different subset of node. We can also called it as a subclustor. If we will consider that 

there are 15 nodes presented and 5 operators are presented. Communication happens from every 

subclustor to all its peers in the next presented subclustors. So total number of hopes is 5 and fan out 

for every node is 15. 

Operator set cloud strategy 

The above operator cloud strategy has been exhibits the trade-off in-between the distribution cost and 

number of hopes. The operator set cloud strategy introduced for minimizing both things at the same 

time. Here for guarantee semantic transparency the communication is required to be done with stateful 

operators. Here each input query is splits in between the multiple sub queries as stateful operators plus 
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an additional one. Sub query consists of stateful operators followed by stateless operators which are 

connected to its output [6]. Here these both strategies minimize the number of hopes and fan out. 

Applications of the Data Streaming Systems  

I n this section we show the application area in some last decade in the field of data streaming. These 

presented applications include both existing and emerging applications that share the same need for 

high processing throughput with low latency and legacy constraints. Among others, examples of these 

scenarios include fraud detection, network security, financial markets, large scale sensor networks and 

military applications. 

 

Fraud detection in cellular telephony 

Fraud detection methods are continuously being developed to checkmate criminals who adopt new 

techniques regularly. The development of new fraud detection method is made difficult due to the 

severe limitation imposed by restricted information flow about the outcome of fraud detection efforts. 

Fraud detection applications in mobile telephony require the ability of processing data whose size is in 

the order of tens or hundreds of thousand messages per second. In cellular telephone fraud detection 

applications, there is a need for low latency processing arises from the fact that the faster the detection, 

the lower the amount of money the fraudster costs to the company. That is, if a cloned number is 

detected after one week, the money spent during that week is lost by the company. 

 

On-line trading 

The act of buying and selling international currencies, stocks, bonds and other financial instruments 

through the internet scenarios involving credit card transactions are another example of applications 

demanding for high processing capacity and very low processing latency. With respect to applications 

that involve credit cards transactions it is even more imperative to provide low latency guarantees as 

such applications must comply with strict time limitations that are often smaller than one second. 

Financial Markets applications 

Another example of existing application demanding for processing of large volume data with low delay 

is related to financial Markets. The growing rate has been so fast that the required capacity exceeded 

the 1 million messages per second in 2008. For on-line trading applications, financial market 

applications demand for very low processing latencies that are often below the one second threshold. 

Network traffic monitoring 

As considering applications monitoring traffic network (e.g., Intrusion Detection applications), the 

need for high processing capacity arises from the huge volume of data moving through the Internet. As 

per the Cooperative Association for Internet Data Analysis, an Internet Service Provider (ISP) usually 

sustains traffic volumes that is at least in the range of 10 GBps. With respect to applications that 

analyze the traffic to detect possible threats, the need for high processing capacity arises not only from 

the big traffic volume that must be processed in real-time in order to block possibly harmful events but 

also from the type of computations run over the data, that usually define not trivial aggregation and 

comparison of on-line and historic data. 

 

Sensor networks, RFID networks 

Several emerging applications demanding for high processing capacity and low processing latency 

arise from sensor networks. These applications are becoming popular due to the decreasing costs of 

sensors that, nowadays, allow for the creation of big networks of such devices with small deployment 

costs. Examples of such scenarios include military applications where soldiers (or vehicles) can be 

equipped with GPS devices to monitor their location. Another sample scenario is RFID tagging for 

animal tracking or RFID tagging of products being produced or sold in big industry. 
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Another important aspect of the data processed by the presented application scenarios is the possible 

presence of incomplete and out-of-order data. Consider, as an example, a data streaming application 

used to process data collected from a sensor network. In such scenario, part of the data produced by 

sensor might disappear (e.g., when a sensor runs out of battery). In this case, the application should still 

consume the data produced by the other sensor and produce the desired result. Similarly, a sensor 

might experience some delay in the forwarding of the produced data. In this case, the data streaming 

application should address the possibility of late processing of information in order to correct imprecise 

results computed before. 

SPEs offer the best capabilities since they are designed and optimized from scratch to address the 

requirements of stream processing. Both DBMSs and rule engines were originally architected for a 

different class of applications with different underlying assumptions and requirements. 

Rules for Stream Processing 

 

There are some rules and regulations has been defined which needs to be done for data stream 

processing [1]. These rules are as follows, 

Rule 1: Keep the Data continuously moving 

The first requirement for a real-time online data stream processing system is to process messages “in-

stream”, without any requirement to store them to perform any operation or sequence of operations. 

Ideally the system should also use an active (i.e., non-polling) processing model. 

Rule 2: Query using SQL on Streams (StreamSQL) 

The second requirement is to support a high-level “StreamSQL” language with built-in extensible 

stream oriented primitives and operators. In streaming applications, some querying mechanism must be 

used to find output events of interest or compute real-time analytics. Historically, for streaming 

applications, general purpose languages such as C++ or Java have been used as the workhorse 

development and programming tools. Unfortunately, relying on low-level programming schemes 

results in long development cycles and high maintenance costs. 

Rule 3: Handle Stream Imperfections (Delayed, Missing and Out-of-Order Data 

The third requirement is to have built-in mechanisms to provide resiliency against stream 

“imperfections”, including missing and out-of-order data, which are commonly present in real-world 

data streams. 

Rule 4: Generate Predictable Outcomes 

The fourth requirement is that a stream processing engine must guarantee predictable and repeatable 

outcomes. 

Rule 5: Integrate Stored and Streaming Data 

The fifth requirement is to have the capability to efficiently store, access, and modify state information, 

and combine it with live streaming data. For seamless integration, the system should use a uniform 

language when dealing with either type of data. 

Rule 6: Guarantee Data Safety and Availability 

The sixth requirement is to ensure that the applications are up and available, and the integrity of the 

data maintained at all times, despite failures. 

Rule 7: Partition and Scale Applications Automatically 

The seventh requirement is to have the capability to distribute processing across multiple processors 

and machines to achieve incremental scalability. Ideally, the distribution should be automatic and 

transparent. 

Rule 8: Process and Respond Instantaneously 

The eighth requirement is that a stream processing system must have a highly-optimized, minimal-

overhead execution engine to deliver real-time response for high-volume applications. 

 

So for doing data streaming, these above criteria should get fulfilled. So stream process engine can 

accept the input and query will get processed. 

 

Different Stream Process Engines 
This section covers some of the stream processing engines and methodologies for data stream 

processing. 

 

Pioneer SPE 
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This section will give a short overview of some of the pioneer SPEs prototypes. We present 

how they marked an evolution with respect to previous existing solutions overcoming their limitations. 

We also provide an overview of the evolution of these pioneer SPEs and their limitations and introduce 

the challenges that motivated our work. 

This idea starting approximately from the year 2000, several SPE prototypes have emerged. These 

prototypes have been designed either as improvements of DB based solutions (i.e., solutions that still 

rely on DBs) either as “fresh" solutions that do not rely on DBs. With respect to the prototype 

applications that were designed to improve DB based solutions to fit with the requirements of data 

streaming, we introduce Cougar, Telegraph and NiagaraCQ. The Cougar research project focused on 

sensor databases, where long running queries are issued to combine live data from a sensor network 

with some stored data. NiagaraCQ is one of the first research projects that extends a query language to 

adapt it to continuous queries. The project focused on how to efficiently run continuous queries over 

XML data files. Where as the TelegraphCQ research project is one the first projects that marks a 

significant step in the evolution of SPEs as it relies on DBs to persist information but introduces 

separate data processing units that manipulate the data in parallel with Cougar, NiagaraCQ and 

TelegraphCQ, two research projects have focused on SPEs that do no rely on DBs to store or 

manipulate data.  

With stream cloud, research has focused on how to ease the migration from DBMS to SPEs. One of the 

most important aspect of STREAM is the introduction of the CQL query language, an evolution of the 

SQL language, enriched with data streaming related operations. One of the requirements of data 

streaming applications is to define operations over portions of the incoming information (referred to as 

windows). The idea is to represent streams by means of relations so that data manipulation can be 

defined using SQL-like commands that operate on them. That is, the relevant portion of incoming 

information that is queried is maintained like a relation and its records are queried by means of 

traditional DBMSs queries. Finally, the resulting relation is converted to a stream of tuples outputted to 

the end user. But there are also some limitations for the stream processing engines. The main limitation 

of both centralized and distributed SPEs is that they both concentrate data streams to single nodes. A 

query running at a centralized SPE receives and processes all the data at the same node. In the case of a 

distributed SPE, even if different operators of a single query are deployed at different nodes, each data 

stream is processed by a single machine (i.e., all the input data stream is routed to the machine running 

the first operator of the query, the stream generated by the first operator is concentrated to the node 

running the second operator, and so on). This single-node bottleneck implies that centralized and 

distributed SPEs do not scale, their processing capacity is bound to the capacity of a single node. In 

order to overcome this limitation, data streams should not be processed by a single node. 

 

Aurora: A Centralized Stream Processor 

In Aurora, data is assumed to come from a variety of sources such as computer programs that generate 

values at regular or irregular intervals or hardware sensors[7]. We will use the term data source for 

either case. A data stream is a potentially unbounded collection of tuples generated by a data source. 

Unlike the tuples of the relational database model, stream tuples are generated in real-time and are 

typically not available in their entirety at any given point in time. Aurora processes tuples from 

incoming streams according to a specification made by an application administrator. Aurora is 

fundamentally a data-flow system and uses the popular boxes and arrows paradigm found in most 

process flow and workflow systems [8]. 

 

Actual implementation of the proposed system: 

In the proposed system, we have focused on the Load balancing, HA and elasticity with the help of 

operator cloud strategies and operator set cloud strategies with some modified algorithms and concepts. 

These steps are as follows, 

Algorithm : Input: Query data Output: Result files. 

1. Data  € Query data. 

2.  Split data using split criteria 

3.  BuildTasks()  -> task 

4.  GetClientStatus () 
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5.  Check busy Bit of the individual client. 

6.  Check client Attribute -> RAM, Processor, Memory 

7.  While(checkBusyBit()) 

8.  Start 

9.  If (allTaskCompleted) 

10.  Break; 

11.  Client feasibility checking for associated task. 

12.  Schedule task to client 

13.  TaskTssign() -> Client 

14.  End 

15.  Contribute Results () 

16.  Display Results () 

17.  End. 

System Architecture 

Architecture diagram shows the improved real-time data system on stream cloud system. Here 

figure represents complete 3T system. In this system, First Q input query comes and it is divided into 

multiple sub queries SQ1, SQ2. The spitted sub queries have been assigned to stream cloud instance for 

execution. While doing this, Stream cloud served uses some operations like parsing, Mapping and Job 

creation and job assignment. While doing this, it has to take care of the different status of the client 

nodes like computing power, CPU, RAM etc. So as per this criteria job has been assigning to 

execution. System also contains the heart bit signal passing mechanism which is using for checking the 

live status of the available nodes. System passes signals continuously for knowing node active status 

after fixed time of interval. If in case reply from node will not get within the time then system assumes 

that node as dead. This technique is useful for improving efficiency of the system. It also continuously 

checks whether new node is presented in the system which helps for HA. Once the operation done 

successfully, then it is directly giving the output. 
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 Stream cloud compliments elastic resource management with dynamic load balancing for guaranty that 

the new instances are only be provisioned when a subclustors of node is not able to cope the incoming 

load. Here system also checks processing power of the computer system like CPU and RAM. So as per 

the collected information task can be assigned for the execution which helps for balancing the load 

across subclustors. System uses different strategies for obtaining elasticity such as  

Elastic reconfiguration protocols 

Subclustor reconfiguration required the transferring the owner ship from one instance of subclustor to 

another ie. from the old instance to new one in the same subclustor. This triggers reconfiguration by 

one or more reconfiguration actions. 

Reconfiguration starts  

The process is initiated by the elastic manager that decides to perform a reconfiguration either for 

provisioning, decommissioning, or load balancing purposes. 

Windows reconfiguration protocol 

The Window Recreation protocol aims at avoiding communication between the instances being 

reconfigured. 

 

Conclusion 

In this paper, we have presented improved Real-time data elasticity on stream cloud is presented. 

System also presents transparent query parallelization that keeps the syntax and semantics of the 

centralized system. HA, Elasticity and scalability are attained by means of novel parallelization 

strategy which minimizes the distribution overheads and also improves the performance of the system. 

Stream cloud elasticity and dynamic load balancing gives efficiency with minimizing number of 

resources. This evolution demonstrates the scalability, elasticity and high availability of stream cloud. 
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