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ABSTRACT 

 Big Data Analysis is at the heart of modern enterprise and scientific research. To analyze this very large-scale 

data, MapReduce has become an attractive model for this kind of data. However, this model is not designed to 

perform join operations with multiple entries. Although many studies on join algorithms like Bloomjoin in 

MapReduce have been explored, but a lot of non-joining data is still being generated and transmitted over the 

network.  This research will provide us with a model to solve this problem by making an intersection filter based on 

the Bloom Filter to eliminate disjoint elements between two sets of input data. Two methods are proposed to model 

the filter. To apply the filter in a join operation, a MapReduce job will be adjusted consistently, attempting not to 

increase the associated costs. Therefore, thanks to the intersection filter, the operation of the joins minimizes the 

cost of  disk I/O. Finally, the study carried out proved its effectiveness by comparing with the existing solutions on 

the costs of the joins of the two approaches. 

. 
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1. INTRODUCTION  

 Big Data or Very large data sets represent a challenge in many discipline. Giant Internet companies as 

Google, Facebook, etc. want to analyze terabytes of application logs and clickstream data, scientists have to process 

data sets collected by large-scale experiments and sensors and the governments of useful and personal data. 

 

 For the government, all information is essential for developing predictive models in various fields. Big data 

serves to find solutions to unresolved problems of science for scientist. However for traders, they want to find 

patterns in customer and sales data to improve their business. But to ensure an answerable time in this analysis, 

parallel computing is essential. MapReduce [1] has been extensively used for large-scale data analysis in academic 

and business areas. MapReduce has become popular and the success stems from hiding the details of parallelization, 

fault tolerance, and load balancing in a simple programming framework. 

 

 Unfortunately, MapReduce has some limitations to performing a join operation on multiple datasets 

because MapReduce does not directly support operations with multiple inputs. Several researches are carried out to 

solve this problem and gave several solutions [2][3] where a join operation will be compiled to MapReduce job(s). 

However, join processing in MapReduce is that it emits large intermediate results  in the map phase do not actually 

participate in the joining process, regardless of the number of final join results. A part of the problem can be solved 

by using a filter called Bloom Filter (BF) [4] which is a space-saving probabilistic structure for testing set 

membership. BF is built for one of the input datasets and is distributed to all mappers. When the mapper receives 
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tuples from another data set of inputs, it looks at the join keys and eliminates tuples that do not match in the filter. 

However, this solution only applies to one of the input data sets to filter the tuples that do not join but not to the two 

input data sets. It is therefore necessary to find a better solution to improve this situation. 

 

 Using the BF in MapReduce, we can see that the result of the join operation only contains tuples whose 

join keys belong to the intersection of the projected datasets on the join key. This paper introduces a new type of 

Bloom filter called Intersection Bloom filter, representing the intersection of the datasets for the join operation. For 

this solution, the disjoint elements are deleted directly during a query for each tuple of the input datasets. 

 

 In this article, we bring three main contributions: two approaches to model the intersection of the filter, the 

optimization of two-way join with its approaches and finally we demonstrate that the intersection of the filter is 

more efficient than the basic Bloom filter in a join operation. 

 

2. JOIN OPERATION ON BLOOM FILTER  
 

2.1 Bloom Filter 

 A Bloom (BF) filter [4] is a probabilistic data structure used to test whether an element is a member of a 

set. It consists of an array of bits indexed by a tuple of independent hash functions. Two configurations of bit 

indexing are generally used, called unpartitioned and partitioned. The k-tuple hash function of an unpartitioned 

Bloom filter uniformly maps to the entire m-bit range of the bit-array, h : S → [𝑚]𝑘. In contrast, a partitioned Bloom 

filter distinguishes k disjoint sub-arrays of the filter, with each hash tuple value uniformly mapping to an integer 
𝑚

𝑘
 -

bit partitioned range, h : S → [
𝑚

𝑘
]𝑘 [5]. 

 

A Bloom BF (S) filter to represent a set S of n elements is described as follows: 

 
 

Fig -1: Unpartitioned Bloom filter BF(U) 

 

 The set U = {u1, u2, ..., un} of n elements is represented by an array of m bits, initially set to 0. 

 The filter uses k hash functions independent H={h1, h2, ..., hk} which returns values in the range {1 ... m} 

such that hi: X → {1..m}, where X is the value of the key. 

 To insert an element x ∈ U, the bits hi(x) are set to 1 for 1 ≤ i ≤ k. A location can be set to 1 many times, 

but only the first change has an effect. 

 To check if an element y ∈ U, we check if all hi (y) are set in the bit array. If not, then clearly y  U  if at 

least one of these positions is set to 0. If all hi (y) are set to 1, we assume that y is in U even though it might 

be false with some probability. 

 

Fig -2 represents a partitioned Bloom filter. It is defined by an array of m bits that is partitioned into k disjoint arrays 

of size mp=m/k bits.  

 

 
 

Fig -2: Partitioned Bloom filter BF(U) 

 

The BF(U) consists of three 4-bit partitions, k=3 hash functions and size m=12 bits.  
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 In the BF(U), we insert an element x ∈ U by computing h i(x) and setting the corresponding position in the 

i
th

 partition to 1 for 1 ≤ 𝑖 ≤ 𝑘. Also, we test if the element y is in S by checking the position corresponding to h i(y) 

in the i
th

 partition. 

 The probability of the unpartitioned filter or basic filter p and the partitioned filter pp is asymptotically 

equivalent of a bit set to 0. Indeed, the basic filter tends to work slightly better than the partitioned filter, because 

when k > 1, the basic filter tends to have more than 0 as the partitioned filter as shown in the expression as follow: 

𝑝 =  (1 −
1

𝑚
)

𝑘𝑛

> 𝑝𝑝 = (1 −
𝑘

𝑚
)

𝑛

                                                                (1) 

 Note that the partitioned filter is more flexible than the basic filter because we can always change the 

probability of false positive after creating the filter by increasing or reducing the partitions without resizing. 

Therefore, the resolution of one of Bloom's filters can be adjusted by eliminating or increasing his partition keeping 

the same partition size. 

 

2.2 MapReduce 

 

 MapReduce [6] is a parallel programming model to simplify large-scale data processing on parallel and 

distributed architectures. Users only need to provide two functions, called map and reduce, and the framework 

handles all issues related to parallelization, fault tolerance, data distribution, and load balancing. 

 

 In the implementation of the MapReduce program (Fig -2), there are two types of processes, the workers, 

which execute map and reduce tasks and the master, which is responsible of controlling the workers’ execution. 

 
Fig -3: Execution overview of MapReduce 

 

2.3 Join in MapReduce 

 

 The join algorithms in MapReduce are generally categorized as map-side join [7] and reduce-side join [7]. 

For map-side join, we observe many intermediate pairs generated during the map phase that do not participate in the 

join process due to the lack of match with the pairs of another input dataset. Therefore, it would be much more 

efficient to eliminate the non-matching data directly in the map phase. This problem can be solved in semi join [8]. 

It filters the redundant input data before the join process by using a distributed cache to broadcast a hash table of one 

of the input datasets on all mappers. Another solution to this problem is the broadcast join [9] which is another 

option if one of the datasets is very small, so that it can match the memory. The main obstacle to these solutions is 

the hash table, which may not fit in memory and replication on all mappers may be inefficient. Bloomjoin [10] [11] 

or join algorithm using Bloom filters is an advantageous and original solution for filtering tuples that are not 

associated with a join, as shown in Fig -4. 
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Fig -4: Bloomjoin in MapReduce 

 

3. MODELING INTERSECTION FILTER BASED ON BLOOM FILTER 

 

 In Bloomjoin, basic Bloom filters are used. But, these filters only have the ability to remove redundant data 

from one of the input datasets instead of both; therefore, there remains a large amount of redundant data of another 

dataset that is passed to join processing. A better replacement for the basic filters is the intersection filter with the 

ability to filter out disjoint elements between two datasets. We show in this section two approaches to build the 

intersection filter. 

 

 In this paper, a set X can be presented as a bloom filter through a mapping relation: X → BF(X). We use 

two bloom filters BF(U) and BF(V) as the concise representation of two different given sets U and V respectively. 

 

3.1 Approach 1: Intersection of unpartitioned Bloom 

 

 The main idea of this approach is that the intersection of the Bloom filters results in a filter called 

intersection filter. 

 

 By arranging the expression of the intersection of the filters in [8], we obtain 𝐵𝐹(𝑈 ∩ 𝑉) = 𝐵𝐹(𝑈)  ∩
 𝐵𝐹(𝑉) with probability(1 − 1 𝑚⁄ )𝑘|𝑈−𝑈∩𝑉|×𝑘|𝑉−𝑈∩𝑉|. 

 

 However, to calculate the intersection of the filters BF (U ∩ V), the intersection of the two filters 𝐵𝐹(𝑈)  ∩
 𝐵𝐹(𝑉) is not sufficient. Therefore, we will have to look for an approximation by joining BF (U) and BF (V) with 

the bit-wise AND and keep the essential query characteristics [12] [13]. This indicates that in the intersection of the 

filters, all k hash functions for join key x corresponding to bit 1, then x belongs to U ∩ V with high probability. 

 

Fig -5 shows the intersection of filters with two unpartitioned Bloom filters using the same size m and k hash 

functions. 
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Fig -5: Intersection of unpartitioned Bloom filters 

 

 The intersection of the filters BF (U ∩ V) is formed by crossing BF (U) and BF (V) with the bit operator 

AND. 

This approach allows us to use a single intersection Bloom filter to remove most of the non-joined tuples from the 

two U and V input datasets. 

 

3.2 Approach 2: Intersection of partitioned Bloom 

 

 In this approach, we always keep the same idea of constructing the intersection of filters but using two 

partitioned Bloom filters. 

 The size of partitioned Bloom filters can be changed after creation. Therefore, we can adapt the partitioned 

filters BF (U), BF (V) and 𝐵𝐹(𝑈)  ∩  𝐵𝐹(𝑉)by decreasing or increasing the partitions without re-hashing to 

guarantee the same size m and k hash functions. 

Fig -6 describes the construction of the intersection of the filters. 

 

Fig -6: Intersection of partitioned Bloom filters 

 To create the intersection filters BF (U ∩ V), two partitioned Bloom filters BF(U) and BF(V) with 3 

partitions are crossed in pairs with the AND bit operator. The result of the operation produces 3 partitions of 4-bit. 

 We notice that in this approach, the two input data sets are disjoint if there is at least one resulting filter in a 

partition in which all m/k bits are equal to 0. Therefore, join processing can be completed without doing anything. 

This essential feature for joint operations is not present in the first approach which speeds up the processing time. 

3.3 False intersection probability 

 

After defining the two types of intersection of Bloom's filters, we now model their probability of false positives. The 

probability of a false positive for an element not in the set can be calculated as the following expression. 

𝑓 = (1 − 𝑝)𝑘 = (1 − (1 −
1

𝑚
)

𝑘𝑛

)
𝑘

≈ (1 − 𝑒−
𝑘𝑛

𝑚 )
𝑘

                                                      (2) 

 

Fig -7 shows the intersection of two sets with false positives. 

 
 

Fig -7: false positive of two sets using Bloom filters 
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 The false positive of the intersection is defined by the bright area inside the red oval while the actual 

intersection of the two sets of U and V data are in the blue zone marked U∩V. It is also called false intersections. 

Concerning the following theorems, let's fix two sets U, V ⊂ S. 

 

THEOREM 1. A false positif by Bloom filter intersection of unpartitioned BF(U) and BF(V) is reported with 

probability 

𝑓𝑢𝐵𝐹 = (1 − (1 −
1

𝑚
)

𝑘|𝑈|

)
𝑘

  (1 − (1 −
1

𝑚
)

𝑘|𝑉|

)
𝑘

                                                   (3) 

where BF(U), BF(V) and BF(U ∩ V) have the same size m and k hash functions. 

 

PROOF. The intersection of the unpartitioned Bloom filters causes false intersections when all k bits in the resulting 

bit array is set to 1 from two different join keys. From equation (2), the probability for k bits to be set in both BF(U) 

and BF(V) from two different keys is the product of 𝑓𝑈 and 𝑓𝑉. 

where 

𝑓𝑈 = (1 − (1 −
1

𝑚
)

𝑘|𝑈|

)
𝑘

                                                                        (4) 

and 

𝑓𝑉 = (1 − (1 −
1

𝑚
)

𝑘|𝑉|

)
𝑘

                                                                          (5) 

 

THEOREM 2. A false positif by Bloom filter intersection of partitioned BF(U) and BF(V) is reported with 

probability 

𝑓𝑝𝐵𝐹 = (1 − (1 −
𝑘

𝑚
)

|𝑈|

)
𝑘

  (1 − (1 −
𝑘

𝑚
)

|𝑉|

)
𝑘

                                                       (6) 

where BF(U), BF(V) and BF(U ∩ V) have the same size m and k hash functions. k partitions are the same size mp = 

m / k. 

 

PROOF. Like to Theorem 1, the probability for k bits to be set in k partitions of BF(U) and BF(V) with two different 

keys is the product of 𝑓𝑈 and 𝑓𝑉. 

where 

𝑓𝑈 = (1 − (1 −
𝑘

𝑚
)

|𝑈|

)
𝑘

                                                                         (7) 

and 

𝑓𝑉 = (1 − (1 −
𝑘

𝑚
)

|𝑉|

)
𝑘

                                                                          (8) 

 

THEOREM 3. The false intersection probability of the partitioned filter intersection is more than the false 

intersection probability of the unpartitioned filter intersection 𝑓𝑝𝐵𝐹 > 𝑓𝑢𝐵𝐹 

 

PROOF. If Bloom filters have more bits set to 1, the probability for a bit collision can be higher. And thus 

partitioned filters tend to have more 1's than unpartitioned filters. 

As equation (1), we get 

 1 − 𝑝𝑝 = 1 − (1 −
𝑘

𝑚
)

|𝑈|

> 1 − 𝑝 = 1 − (1 −
1

𝑚
)

𝑘|𝑈|

 

(1 − 𝑝𝑝 = 1 − (1 −
𝑘

𝑚
)

|𝑈|

)
𝑘

> (1 − 𝑝 = 1 −  (1 −
1

𝑚
)

𝑘|𝑈|

)
𝑘

                                      (9) 

where 

𝑓𝑝𝐵𝐹 > 𝑓𝑢𝐵𝐹 

 

4. Optimization for two-way joins using intersection filters in MapReduce  
 

4.1 Execution Overview 
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 We implement a 2-way join of the two arbitrary input datasets. We will use the Reduce-side join algorithm 

and evaluate the join operation in general. Nevertheless, we can still use our intersection of filters for the other join 

algorithms.  

 

 We have implemented our approach into the Hadoop [14] wich is the main platform of Big data, an open-

source implementation of the MapReduce framework. In Hadoop, the master node is called the jobtracker and the 

worker node is called the tasktracker.  

 

 
Fig -8. Two-way join execution with intersection filter in MapReduce 

 

When the user program is submitted, the following sequence of actions is performed in our join operation with the 

support of our intersection filter. 

 

1. Job submission. A join job together with its input datasets U and V is configured and submitted by a client 

to the jobtracker. mt1 map tasks for U, mt2 map tasks for V, and r reduce tasks are created. 

 

2. Map phase. The jobtracker assigns each split of the mt1 map tasks for U, mt2 map tasks for V or the r reduce 

tasks to idle tasktrackers. A map tasktracker reads each tuple from its split, converts it to a <key, tuple> 

pair, and then call the map function for the input pairs. 

 

3. Local BF construction. The intermediate pairs produced from the map function are divided into r 

partitions, which are sent to r tasktrackers respectively. Also, r Bloom filters are constructed on the keys in 

each partition i.e. BF(U) for the dataset U and BF(V) for the dataset V. These filters are called local filters 

because they are built for only the intermediate results in memory on tasktrackers.  

 

4. Global BF merging. Once all map tasks are complete, the jobtracker signals all tasktrackers and they send 

their local filters via heartbeat responses to the jobtracker. Then, the jobtracker merges the local Bloom 

filters to constructs two global filters BF(U) and BF(V). 

 

5. Intersection BF merging. It computes and builds the intersection filter BF(U ∩ V) based on our proposals 

from the two global filters. If the intersection filter is empty, the entire join job will be finished and the 

jobtracker responds with instructions to stop tasks or the job.  
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6. Distribute intersection BF. If the intersection filter exist, the intersection filter is distributed to all nodes in 

a cluster using a distributed cache. 

 

7. Map phase. The map function queries the join key of the tuple into the intersection filter BF (U ∩ V). If it 

exists, then the map has a tagged pair <dataset-name :: join-key, tuple> and sends this pair to a 

corresponding reducer. The input key/value pairs which are not set in intersection filter are filtered out. 

 

8. Reduce phase. The reduce function will take its input and do a full crossproduct of tuples of different input 

datasets for a given join key to get our joined output. Final output results are written into Distributed File 

System (DFS). 

 

4.2 Merging Bloom Filters 

 

 The merger of Bloom's filters is easier to implement than the intersection of Bloom's filters. The merge 

operation corresponds to the construction of the union filter BF (U ∪ V). We can build the union of  Bloom filter as 

shown in the Theorem 4. 

 

THEOREM 4. If BF(U1∪ U2), BF(U1) and BF(U2) use the same m and hash functions, then BF(U1 ∪ U2) = BF(U1) 

∪ BF(U2). 

 

PROOF. Assume that the number of hash functions is k. We choose an element y from set U1 ∪ U2 randomly, and y 

must also belong to set U1 or U2. Bits hi(y) of BF(U1 ∪ U2) are set to 1 for 1 ≤ i ≤ k, and at the same time, bits hi(y) 

of BF(U1) or BF(U2) are set to 1, thus BF(U1) [hi(y)] ∪ BF(U2)[hi(y)] are also set to 1. Instead, we chose an element 

x from set U1 or U2 randomly, and x also belong to set U1 ∪ U2. Bits hi(x) of BF(U1) ∪ BF(U2) are set to 1 for 1 ≤ i ≤ 

k, and at the same time, bits hi(x) of BF(U1 ∪ U2) are also set to 1. Thus, BF(U1 ∪ U2)[i] = BF(U1)[i] ∪ BF(U2)[i] for 

1 ≤ i ≤ m.   

 

We can actually extend Theorem 4 out to the following fact. 

 

THEOREM 5. If BF(U1), BF(U2),..., BF(Un) and BF(U1 ∪ U2… ∪ Un) use the same size m and k hash functions, 

then BF(Un) and BF(U1 ∪ U2… ∪ Un) = BF(U1) ∪ BF(U2) ... BF(Un). 

 

 The union of Bloom filters with the same size and set of hash functions is implemented by bit-wise OR. 

In the Global BF merging step, the jobtracker can collect all local Bloom filters from tasktrackers, merge the filters 

by using the bit-wise OR of two bit-arrays, and generate the global Bloom filter. And in Intersection BF merging, 

the global filter is intersected with another global filter to create the intersection filter BF(U ∩ V). 

 

5. COST ANALYSIS  

 

5.1 Cost Model  

 A cost model for MapReduce is presented in [15]. We will adapt this model to the model of our 

implementation. Assume that we have a MapReduce job that read the input dataset U and V. Let | U| be the size of 

U, | V| be the size of V, and | D| the size of the intermediate data of the join job. We also assume that 𝑐𝑙is the cost to 

read or write data locally, 𝑐𝑡 is the cost to transfer data from one node to another, 𝑐𝑟 is the cost of reading or writing 

data remotely, |O| is the size of the ouput data, t is the number of tasktrackers,  and the size of the sort buffer is B + 

1. 

 

 The total cost for a join operation between U and V is the sum of the total cost 𝐶𝑟𝑒𝑎𝑑to read the data, the 

total cost 𝐶𝑓𝑖𝑙𝑡𝑒𝑟  to transfer Bloom filters among the nodes (corresponds to step (3) to (6) in Fig -8), the total cost 

𝐶𝑤𝑟𝑖𝑡𝑒to write the data, the total cost 𝐶𝑠𝑜𝑟𝑡to perform the sorting and copying at the map and reduce nodes, the total 

cost 𝐶𝑡𝑟totransfer intermediate data among the nodes. Then, the total cost C is as follows: 

𝐶 = 𝐶𝑟𝑒𝑎𝑑 + 𝐶𝑓𝑖𝑙𝑡𝑒𝑟 + 𝐶𝑠𝑜𝑟𝑡 + 𝐶𝑡𝑟 + 𝐶𝑤𝑟𝑖𝑡𝑒                                                    (10) 

where 
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 𝐶𝑟𝑒𝑎𝑑 = 𝑐𝑟 . |𝑈| + 𝑐𝑟 . |𝑉|                                                                                                                                                                   (11) 

 𝐶𝑓𝑖𝑙𝑡𝑒𝑟 = 2. 𝑐𝑡 . 𝑚. 𝑟. 𝑡                                                                                                                 (12) 

𝐶𝑡𝑟 = 𝑐𝑡 . |𝐷|                                                                                                                                                                                                  (13) 

𝐶𝑠𝑜𝑟𝑡 = 𝑐𝑙 . |𝐷|. 2. (⌈𝑙𝑜𝑔𝐵|𝐷| − 𝑙𝑜𝑔𝐵(𝑚𝑡1 + 𝑚𝑡2)⌉ + ⌈𝑙𝑜𝑔𝐵(𝑚𝑡1 + 𝑚𝑡2)⌉)                              (14) 

𝐶𝑤𝑟𝑖𝑡𝑒 = 𝑐𝑟 . |𝑂|                                                                                                                                                                                           (15) 

 

 In equation (10), we add the cost 𝐶𝑤𝑟𝑖𝑡𝑒and 𝐶𝑓𝑖𝑙𝑡𝑒𝑟  to the cost model described in [15]. 𝐶𝑤𝑟𝑖𝑡𝑒is the cost of 

writing the final results. 𝐶𝑓𝑖𝑙𝑡𝑒𝑟  is a constant because the Map Reduce framework parameters, such as the size of a 

Bloom filter m, the number of reduce tasks r, and the number of tasktrackers t, are set. The coefficient is multiplied 

by two because local and intersection filters are transmitted between the jobtracker and the tasktrackers. If Bloom 

filters are not used, 𝐶𝑓𝑖𝑙𝑡𝑒𝑟 is zero. An additional difference in our model is the size of intermediate results |D| is 

changed according to the performance of Bloom filters. This is discussed in the following subsection. 

5.2 Cost comparison of approaches 

  

 The important factor that determines the total cost is the size of intermediate results |D|. Let 𝜎𝑈is the ratio 

of the joined records of V with U, and 𝜎𝑉 is the ratio of the joined records of U with V. Then we can estimate |D| 

with the false intersection of probability as follows: 

|𝐷| = {

𝜕𝑉|𝑈|+𝑓𝑢𝐵𝐹 . (1 − 𝜕𝑉)|𝑈| + 𝜕𝑈|𝑉|𝑓𝑢𝐵𝐹 . (1 − 𝜕𝑈)|𝑉|                                                                                      (16)

𝜕𝑉|𝑈|+𝑓𝑝𝐵𝐹 . (1 − 𝜕𝑉)|𝑈| + 𝜕𝑈|𝑉|𝑓𝑝𝐵𝐹 . (1 − 𝜕𝑈)|𝑉|                                                                                       (17)

 |𝑈| + |𝑉|                                                                                                                                                                    (18)

 

 

where 

equation (16) for the unpartitioned intersection filter (approach 1), 

equation (17) for the partitioned intersection filter (approach 2), 

equation (18) if Bloom filter is not used, 

and 𝑓𝑢𝐵𝐹 et 𝑓𝑝𝐵𝐹 refer to Section 3.3. 

We can learn from this equation of intermediate results |D|, the following evaluation imports. 

THEOREM 6. The join operation using a basic Bloom filter is less efficient than using an intersection filter because 

it produces a lot of redundant and intermediate data than the intersection filter. 

|𝐷|16 < |𝐷|17 < |𝐷|18                                                                           (19) 

where |D|i is the intermediate data size for equation i
th

 (i = 16, 17, 18). 

PROOF. From Theorem 3, we get 0 < fuBF < fpBF << 1. We can therefore deduce 

𝜕𝑈|𝑉|𝑓𝑢𝐵𝐹 . (1 − 𝜕𝑈)|𝑉| < 𝜕𝑈|𝑉|+𝑓𝑝𝐵𝐹 . (1 − 𝜕𝑈)|𝑉| < |𝑉|                                            (20) 

𝜕𝑉|𝑈|𝑓𝑢𝐵𝐹 . (1 − 𝜕𝑉)|𝑈| < 𝜕𝑉|𝑈|+𝑓𝑝𝐵𝐹 . (1 − 𝜕𝑉)|𝑈| < |𝑈|                                            (21) 

Combining inequalities (20) and (21) into equations (16), (17) and (18), Theorem 6 is proved to be true. 

From equations (10) and (19), we can evaluate the total cost of the join operation for the different approaches by the 

following theorem. 



Vol-4 Issue-6 2018       IJARIIE-ISSN(O)-2395-4396 

 

9249 www.ijariie.com 115 

THEOREM 7. The cost of join operation using the intersection filter is the lowest. Also, we can derive comparing 

equation for the total cost of the algorithms: 

|𝐶|16 < |𝐶|17 < |𝐶|18 

where Ci is the total cost in case of equation i
th

 (i = 16, 17, 18). 

6. CONCLUSION  

 In this paper, we have presented an architecture to improve join performance of two-way join using 

intersection of Bloom filters in the MapReduce framework. We have made two approaches for building the 

intersection filter. First, we use unpartitionned Bloom Filter or partitioned filter to build the intersection filter. 

Second, we have evaluated our approaches comparing the cost of join operation and the cost of intermediate data. 

The results show that the join operation using the intersection filter is more efficient than other solutions since it 

significantly reduces redundant data, and thus produces much less intermediate data. In addition, the intersection 

filter has false positive results and an additional cost for the construction of the filter, its efficiency in terms of space 

saving and filtering which really compensates for these disadvantages. 

 To conclude, optimizing two-way join using the intersection filter offers a new solution for researchers in 

MapReduce framework as well as in the Big Data field. In addition, an experimental evaluation will also be 

considered. 
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