
Vol-2 Issue-4 2016 IJARIIE-ISSN(O)-2395-4396

2841 www.ijariie.com 93

INCOPRATING CUDA IN HADOOP IMAGE

PROCESSSING INTERFACE FOR

DISTRIBUTED IMAGE PROCESSING

Helly Patel1, Mr. Krunal Panchal2

1
 PG Student, Computer Engineering, LJIET, Ahmedabad, Gujarat, India

2
 Assistant Professor, Computer Engineering, LJIET, Ahmedabad, Gujarat, India

ABSTRACT

 This paper presents parallel processing based on integrated approach of Hadoop and CUDA for large scale image

processing. It makes the use of high reliability, scalability and fault tolerance capability of Hadoop system and high

computing power of CUDA for processing huge amount of images in highly efficient manner.so the main aim is to

improve performance of image processing task by using features of both, Hadoop and CUDA and to overcome the

problem that are occur while processing large no of images in customary sequential manner. The proposed model

serves as a good candidate solution for both type of applications i.e. data intensive application and compute

intensive application. As Hadoop performs well for data intensive applica tion through the use of HDFS and CUDA

serves best in case of compute intensive application, integration of both the framework provides faster execution for

image processing task. Image storage is provided through Hadoop Distributed File System and Map and Reduce

primitive of Hadoop Mapreduce will be performed using CUDA on GPU.

Keyword : - Hadoop, CUDA, GPU, GPGPU, Distributed system, Parallel system

1. INTRODUCTION

Multimedia database generated in today’s world is Real time database and it keeps on increasing due to social

media, computer graphics and vision, satellite database, video surveillance, medical Image database . So it is

challenging task to process and analyze such vast amount of database. Technology, algorithm and framework

developed up till now are both resource and compute intensive and its execution with larger number of images take

much more time for in case of single node implementation. Parallel and Distributed systems are having potential to

do such kind of task with more scalability, reliability and with faster execution. Which makes it emerging

technology for the image processing domain. Apache Hadoop is widely used in distributed processing as it manage

data partitioning, data distribution, fault tolerance, result aggregation, etc. which in turn provide programming

simplicity to the developers. CUDA provide efficient medium for parallel execution on Graphics Processing units.

2. RELATED WORK

Lots of research has been done on in the field of image processing and still going on to efficiently process images

using parallel and distributed architecture. Fang et. al. developed Mars, a MapReduce runtime system accelerated

with graphics processing units which is executed only on single node of Hadoop [1]. Gongrong Zhang et. al.

suggested parallel processing model based on Hadoop platform for large-scale images processing [2]. Ramani

Duraiswami et. Al. had performed canny edge detection on NVIDIA CUDA performance is tested[3]. Jie Zhu had

integrated Hadoop with GPU for word count application [4]. Peter Bajcsy et. al. had executed image processing on

Hadoop to lower the barrier of executing spatial image computations in a computer cluster/cloud environment

instead of in a desktop/laptop computing environment[5].

Vol-2 Issue-4 2016 IJARIIE-ISSN(O)-2395-4396

2841 www.ijariie.com 94

3. BACKGROUND

Apache Hadoop is open source, scalable framework for processing data in distributed manner. Hadoop is having its

own storage system i.e. HDFS (Hadoop Distributed File System) and its own computing system i.e. Mapreduce.

HDFS provide distributed storage with scalability, reliability, automatic data distribution, and aggregation and fault

tolerance. Map reduce work with two primitives i.e. Map and Reduce. The Map function takes an input key/value pair

(k1,v1)and outputs a list of intermediate key/value pairs (k2, v2) The Reduce function takes all values associated with the
same key and produces a list of key/value pairs.

GPU (Graphics Processing Unit) are special processors that perform graphical tasks in a massively parallel manner

and thus supplied high processing power. It is most powerful and inexpensive computational hardware which is

widely used in the field of Image processing. Massively-parallel threaded GPUs

provide more efficiency and speed

up. A GPU card include number of cores which can execute multiple tasks in parallel. They are known as a

massively parallel processors which are 10 times more rapidly computation and 10x greater memory bandwidth than

CPUs. At present, they are used as co-processors for the CPU. The programming languages include NVIDIA

CUDA, OPENMP, etc. Programmers write two kinds of code while performing GPU programming, the kernel and

the host code
[13]

. The kernel code is executed in parallel on the GPU. The host code running on the CPU controls

the data transfer between the GPU and the main memory, and starts kernels on the GPU.

CUDA (Compute Unified Device Architecture) is a programming model which is used for leveraging the high

compute-intensive processing power of the Graphical Processing Unit (GPUs) to perform general, non-graphical

tasks in a massively parallel manner [10]. It is a C-based programming model suggested by NVIDIA for leveraging

the parallel computing capabilities of the GPU for general purpose computations [10]. CUDA allows software

developers to use CUDA-enabled GPU for general purpose processing – an approach known as GPGPU .In the

CUDA context, the GPU is known as a device, whereas the CPU is known as host. A kernel includes set of

computations that is offloaded by the CPU to be executed on the GPU. A CUDA kernel is used to perform execution

on the GPU by a grid of thread blocks, each consisting of a set of threads . Compute-intensive data-parallel part of

applications is allowed to be executed as a kernel on GPU by CUDA as kernels, to the GPU [10].

HIPI(Hadoop image Processing Interface) is an image processing library designed to be used with the Apache

Hadoop Mapreduce parallel programming framework and provide support for processing Images at larger extent

[11]. HIPI removes the highly technical details of Hadoop’s s ystem and give users with the familiar sense of an

image based library by allowing users to access to the resources of a distributed system [11]. The goal is to

providing a platform specific to all image and graphics based applications. It is able to perfo rm even with repetitive

modifications and enhancements within Hadoop [11]. HIPI abstract functionality of Hadoop into an image-centric

system and providing an efficient tool to researchers.

4. IMAGE PROCESSING FOR CANNY EDGE DETECTION

Identification and extraction of edges from images is considered as an Edge detection function in image processing.

It is applicable in fields such as object recognition, image segmentation, data compression, land -water border etc.

Edges in an image are signified by a significant image intensity change which represents important object features

and boundaries between objects in an image. This multistep algorithm is considered as a standard and optimal

detector among all edge detector algorithm.

Canny’s algorithm consists of five major steps:

I. Image smoothing

II. Gradient computation

III. Edge direction computation

IV. Nonmaximum suppression

V. Hysteresis.

5. EXPRIMENTATION

Vol-2 Issue-4 2016 IJARIIE-ISSN(O)-2395-4396

2841 www.ijariie.com 95

In this work, we implemented CPU and GPU based canny edge detection algorithm using HIPI and CUDA

framework respectively. Another is integrated framework of CUDA with HIPI execution. Canny Edge detection

algorithm is performed to evaluate execution speedup. Performance comparison is done for different for different

image dimension.

Table -1: Software configuration of node

CUDA 7.5

No of node in Hadoop 2

Components Configurations and Releases

OS Ubuntu 15.04 LTS

JDK 1.7.0_79

Hadoop 2.4.0

Table -2: GPU key parameters

CUDA/GPU Specification Value / Description

Name GeForce GTX 750 TI

Number of Streaming Processors (SMs) 640 CUDA core

Core speed 1020 MHz

Memory 2 GB of GDDR5

Memory clock 5.4 GBPS

Standard Memory 2048 MB

6. RESULT ANALYSIS

 Chart -1: Performance comparison of HIPI Chart -2: Performance comparison of CUDA

 program executed on CPU program executed on CPU

Vol-2 Issue-4 2016 IJARIIE-ISSN(O)-2395-4396

2841 www.ijariie.com 96

Chart -3: Performance improvement in execution Chart -4: Performance comparison of integrated

time(%) in GPU(CUDA) compare to CPU(HIPI) program executed in GPU

execution

Chart -4: Performance Improvement in execution Time (%) in GPU (CUDA) compare to Integrated program

execution

Canny edge detection algorithm is performed on different image size. As shown in Chart 1 execution time for HIPI

program increase with increase in image size. Chart-2 shows that for CUDA program execution time decrease with

increase in image dimension. Chart -3 shows Performance Improvement in execution Time (%) in GPU (CUDA)

compare to CPU (HIPI) execution. Chart -4 shows performance comparison of integrated program which is less than

standalone CUDA and HIPI program. Chart -5 shows Performance Improvement in execution Time (%) in GPU

(CUDA) compare to integrated program execution. Canny Edge Detection algorithm performance is similar to

Vol-2 Issue-4 2016 IJARIIE-ISSN(O)-2395-4396

2841 www.ijariie.com 97

CUDA execution i.e. percentage improvement in execution time is around 1 to two percent. For larger size Images

of dimension 1600*1200and 2048*2048 , performance is improved up to 3.73 to 6.3 percentage which shows that

for large scale image processing Integrated system is having very good potential to execute task in parallel and

Distributed system .

Table -1: Execution time on different platform

Image Dimension

 Execution time

HIPI (second) CUDA

(millisecond)

Integrated

Program (millisecond)

225*225 1 90.31 90.23

259*194 2 88.47 88.02

512*512 3 87.09 85.95

1024*1024 7 85.21 83.30

1600*1200 9 84.62 81.46

2048*2048 20 83.55 78.01

7. CONCLUSION

By using GPU based parallel processing mechanism the computing power of GPU and CPU is fully utilized. CUDA

accelerated Hadoop image processing interface is having a lot of potential as a platform for processing

computationally intensive image database with faster speed in distributed environment. The entire image detection

algorithm performed faster for every size input image. For all image sizes, the performance increases gradually. For

the portions of the algorithm performed entirely with the GPU (image smoothing, gradient computation, edge

direction computation, and edge classification), the improvement was much larger. The smallest input image wa s

processed 95.4 percent faster by the GPU and the larger input images were processed between 99.3 and 99.7 percent

faster. Proposed system is suitable for both resource intensive and compute intensive applications. Framework

exhibit higher scalability, reliability, and performance.

8. REFERENCES

[1] Fang, Wenbin, Bingsheng He, Qiong Luo, and Naga K. Govindaraju. "Mars: Accelerating mapreduce with

graphics processors." IEEE Transactions on Parallel and Distributed Systems 22, no. 4 (2011): 608-620.

[2] Zhang, Gongrong, Qingxiang Wu, Zhiqiang Zhuo, Xiaowei Wang, and Xiaojin Lin. "A Large -scale Images

Processing Model Based on Hadoop Platform." In Proceedings of the Second International Conference on

Innovative Computing and Cloud Computing, p. 51. ACM, 2013.

[3] Luo, Yuancheng, and Ramani Duraiswami. "Canny edge detection on NVIDIA CUDA." In Computer Vision

and Pattern Recognition Workshops, 2008. CVPRW'08. IEEE Computer Society Conference on , pp. 1-8. IEEE,

2008.

[4] Zhu, Jie, Juanjuan Li, Erikson Hardes ty, Hai Jiang, and Kuan-Ching Li. "GPU-in-Hadoop: Enabling MapReduce

across distributed heterogeneous platforms." In Computer and Information Science (ICIS), 2014 IEEE/ACIS 13th

International Conference on, pp. 321-326. IEEE, 2014.

Vol-2 Issue-4 2016 IJARIIE-ISSN(O)-2395-4396

2841 www.ijariie.com 98

[5] Bajcsy, Peter, Phuong Nguyen, Antoine Vandecreme, and Mary Brady. "Spatial computations over terabyte -

sized images on hadoop platforms." In Big Data (Big Data), 2014 IEEE International Conference on, pp. 816-824.

IEEE, 2014.

[6] Bandre, Sanraj, and Jyoti Nandimath. "A Network Intrusion Detection System Framework based on Hadoop and

GPGPU."

[7] Lourenço, Luis HA, Daniel Weingaertner, and Eduardo Todt. "Efficient implementation of canny edge detection

filter for ITK using CUDA." In Computer Systems (WSCAD-SSC), 2012 13th Symposium on, pp. 33-40. IEEE,

2012.

[8] Sarade Shrikant D.,Disale Swapnil P., “LARGE SCALE SATELLITE IMAGE PROCESSING USING

HADOOP DISTRIBUTED SYSTEM ”, International Journal of Advanced Research in Computer Engineering &

Technology (IJARCET) Volume 3 Issue 3, March 2014

[9] Sozykin, Andrey, and Timofei Epanchintsev. "MIPr-a framework for distributed image processing using

Hadoop." In Application of Information and Communication Technologies (AICT), 2015 9th International

Conference on, pp. 35-39. IEEE, 2015.

[10] Yang, Zhiyi, Yating Zhu, and Yong Pu. "Parallel image processing based on CUDA." In Computer Science and

Software Engineering, 2008 International Conference on, vol. 3, pp. 198-201. IEEE, 2008.

[11] Vemula, Sridhar, and Christopher Crick, "Hadoop Image Processing Framework."

